publication . Article . Preprint . 2020

BPS spectra and 3-manifold invariants

Gukov, Sergei; Pei, Du; Putrov, Pavel; Vafa, Cumrun;
Open Access English
  • Published: 01 Jan 2020
  • Country: United States
Comment: v2: 80 pages, 7 figures, typos corrected, exposition improved with three newly added subsections (2.3, 2.4, 2.10)
free text keywords: 3-manifold, BPS spectrum, invariant, knot, Algebra and Number Theory, High Energy Physics - Theory, Mathematical Physics, Mathematics - Geometric Topology, Mathematics - Quantum Algebra
Funded by
NSF| Interactions of Particles, Fields and Strings
  • Funder: National Science Foundation (NSF)
  • Project Code: 1067976
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Physics
NSF| Programs on Critical Problems in Physics, Astrophysics and Biophysics at the Aspen Center for Physics
  • Funder: National Science Foundation (NSF)
  • Project Code: 1066293
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Physics
16 references, page 1 of 2

[2] A. Floer, An instanton-invariant for 3-manifolds, Comm. Math. Phys. 118 (1988) 215{240. [OpenAIRE]

[6] D. Birmingham, M. Blau, M. Rakowski and G. Thompson, Topological eld theory, Phys. Rept. 209 (1991) 129{340. [OpenAIRE]

[7] L. Rozansky and H. Saleur, S and T matrices for the superU(1,1) WZW model: Application to surgery and three manifolds invariants based on the Alexander-Conway polynomial, Nucl. Phys. B389 (1993) 365{423, [hep-th/9203069].

[8] D. Chang, I. Phillips and L. Rozansky, R matrix approach to quantum superalgebras su-q(m/n), J. Math. Phys. 33 (1992) 3710{3715, [hep-th/9207075]. [OpenAIRE]

[9] L. Rozansky and H. Saleur, Reidemeister torsion, the Alexander polynomial and U(1,1) Chern-Simons Theory, J. Geom. Phys. 13 (1994) 105{123, [hep-th/9209073].

[11] L. Crane and I. B. Frenkel, Four-dimensional topological quantum eld theory, Hopf categories, and the canonical bases, J. Math. Phys. 35 (1994) 5136{5154.

[28] M. Atiyah, On framings of 3-manifolds, Topology 29 (1990) 1{7.

[69] L. C. Je rey, Chern-simons-witten invariants of lens spaces and torus bundles, and the semiclassical approximation, Communications in mathematical physics 147 (1992) 563{604.

[70] R. Lawrence and D. Zagier, Modular forms and quantum invariants of 3-manifolds, Asian Journal of Mathematics 3 (1999) 93{108.

[71] B. Cooper and V. Krushkal, Categori cation of the Jones-Wenzl projectors, Quantum Topol. 3 (2012) 139{180. [OpenAIRE]

[72] B. Cooper, M. Hogancamp and V. Krushkal, SO(3) homology of graphs and links, Algebr. Geom. Topol. 11 (2011) 2137{2166.

[73] V. Turaev and O. Viro, State sum invariants of 3-manifolds and quantum 6j-symbols, Topology 31 (1992) 865 { 902. [OpenAIRE]

[74] V. G. Turaev et al., Shadow links and face models of statistical mechanics, J. Di erential Geom 36 (1992) 35{74. [OpenAIRE]

[75] K. Walker, On wittens 3-manifold invariants, preprint (1991) .

[76] V.-G. Turaev, Quantum invariants of knots and 3-manifolds. Walter de Gruyter &Co., 1994. [OpenAIRE]

16 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue