Share  Bookmark

 Download from


[1] M. Albenque and J.F. Marckert. Some families of increasing planar maps. Electron. J. Probab., 13:no. 56, 1624{1671, 2008.
[2] D. Aldous. Cambridge University Press, 1991.
[3] D. Aldous. Treebased models for random distribution of mass. J. Stat. Phys, 73:625{641, 1993.
[4] D. Aldous. Recursive selfsimilarity for random trees, random triangulations and brownian excursion. The Annals of Probability, 22(2):pp. 527{545, 1994.
[5] J. Barral. Moments, continuite, et analyse multifractale des martingales de mandelbrot. Probability Theory and Related Fields, 113:535{569, 1999.
[6] P. Billingsley. Probability and measure. 3rd ed. Chichester: John Wiley & Sons Ltd., 1995.
[7] N. Bonichon, S. Felsner, and M. Mosbah. Convex drawings of 3connected plane graphs. Algorithmica, 47(4):399{420, 2007.
[8] D. Burago, Y. Burago, and S. Ivanov. A course in metric geometry. Providence, RI: American Mathematical Society (AMS), 2001.
[9] N. Curien and I. Kortchemski. Random noncrossing plane con gurations: A conditioned galtonwatson tree approach. 2012.
[10] E. Fekete. Branching random walks on binary search trees: convergence of the occupation measure. ESAIM, Probab. Stat., 14:286{298, 2010.