On Dirichlet-to-Neumann Maps and Some Applications to Modified Fredholm Determinants

Preprint English OPEN
Gesztesy, Fritz; Mitrea, Marius; Zinchenko, Maxim;
(2010)
  • Subject: Mathematical Physics | Mathematics - Spectral Theory | 34B27, 34L40. | 47B10, 47G10
    arxiv: Mathematics::Spectral Theory

We consider Dirichlet-to-Neumann maps associated with (not necessarily self-adjoint) Schrodinger operators in $L^2(\Omega; d^n x)$, $n=2,3$, where $\Omega$ is an open set with a compact, nonempty boundary satisfying certain regularity conditions. As an application we de... View more
  • References (71)
    71 references, page 1 of 8

    [1] S. Albeverio, J. F. Brasche, M. M. Malamud, and H. Neidhardt, Inverse spectral theory for symmetric operators with several gaps: scalar-type Weyl functions, J. Funct. Anal. 228, 144-188 (2005).

    [2] W. O. Amrein and D. B. Pearson, M operators: a generalisation of Weyl-Titchmarsh theory, J. Comp. Appl. Math. 171, 1-26 (2004).

    [3] J. Behrndt and M. Langer, Boundary value problems for partial differential operators on bounded domains, J. Funct. Anal. 243, 536-565 (2007).

    [4] J. Behrndt, M. M. Malamud, and H. Neidhardt, Scattering matrices and Weyl functions, preprint, 2006.

    [5] J. F. Brasche, M. M. Malamud, and H. Neidhardt, Weyl functions and singular continuous spectra of self-adjoint extensions, in Stochastic Processes, Physics and Geometry: New Interplays. II. A Volume in Honor of Sergio Albeverio, F. Gesztesy, H. Holden, J. Jost, S. Paycha, M. Ro¨ckner, and S. Scarlatti (eds.), Canadian Mathematical Society Conference Proceedings, Vol. 29, Amer. Math. Soc., Providence, RI, 2000, pp. 75-84.

    [6] J. F. Brasche, M. M. Malamud, and H. Neidhardt, Weyl function and spectral properties of self-adjoint extensions, Integral Eqs. Operator Theory 43, 264-289 (2002).

    [7] B. M. Brown and M. Marletta, Spectral inclusion and spectral exactness for PDE's on exterior domains, IMA J. Numer. Anal. 24, 21-43 (2004).

    [8] D. Burghelea, L. Friedlander, and T. Kappeler, On the determinant of elliptic differential and finite difference operators in vector bundles over S1, Commun. Math. Phys. 138, 1-18 (1991). Erratum: Commun. Math. Phys. 150, 431 (1992).

    [9] D. Burghelea, L. Friedlander, and T. Kappeler, Meyer-Vietoris type formula for determinants of elliptic differential operators, J. Funct. Anal. 107, 34-65 (1992).

    [10] D. Burghelea, L. Friedlander, and T. Kappeler, Regularized determinants for pseudodifferential operators in vector bundles over S1, Integral Eqs. Operator Theory 16, 496-513 (1993).

  • Similar Research Results (2)
  • Metrics