71 references, page 1 of 8 [1] S. Albeverio, J. F. Brasche, M. M. Malamud, and H. Neidhardt, Inverse spectral theory for symmetric operators with several gaps: scalar-type Weyl functions, J. Funct. Anal. 228, 144-188 (2005).

[2] W. O. Amrein and D. B. Pearson, M operators: a generalisation of Weyl-Titchmarsh theory, J. Comp. Appl. Math. 171, 1-26 (2004).

[3] J. Behrndt and M. Langer, Boundary value problems for partial differential operators on bounded domains, J. Funct. Anal. 243, 536-565 (2007).

[4] J. Behrndt, M. M. Malamud, and H. Neidhardt, Scattering matrices and Weyl functions, preprint, 2006.

[5] J. F. Brasche, M. M. Malamud, and H. Neidhardt, Weyl functions and singular continuous spectra of self-adjoint extensions, in Stochastic Processes, Physics and Geometry: New Interplays. II. A Volume in Honor of Sergio Albeverio, F. Gesztesy, H. Holden, J. Jost, S. Paycha, M. Ro¨ckner, and S. Scarlatti (eds.), Canadian Mathematical Society Conference Proceedings, Vol. 29, Amer. Math. Soc., Providence, RI, 2000, pp. 75-84.

[6] J. F. Brasche, M. M. Malamud, and H. Neidhardt, Weyl function and spectral properties of self-adjoint extensions, Integral Eqs. Operator Theory 43, 264-289 (2002).

[7] B. M. Brown and M. Marletta, Spectral inclusion and spectral exactness for PDE's on exterior domains, IMA J. Numer. Anal. 24, 21-43 (2004).

[8] D. Burghelea, L. Friedlander, and T. Kappeler, On the determinant of elliptic differential and finite difference operators in vector bundles over S1, Commun. Math. Phys. 138, 1-18 (1991). Erratum: Commun. Math. Phys. 150, 431 (1992).

[9] D. Burghelea, L. Friedlander, and T. Kappeler, Meyer-Vietoris type formula for determinants of elliptic differential operators, J. Funct. Anal. 107, 34-65 (1992).

[10] D. Burghelea, L. Friedlander, and T. Kappeler, Regularized determinants for pseudodifferential operators in vector bundles over S1, Integral Eqs. Operator Theory 16, 496-513 (1993).