publication . Preprint . Article . 2011

The wasteland of random supergravities

David Marsh; Liam McAllister; Timm Wrase;
Open Access English
  • Published: 13 Dec 2011
We show that in a general \cal{N} = 1 supergravity with N \gg 1 scalar fields, an exponentially small fraction of the de Sitter critical points are metastable vacua. Taking the superpotential and Kahler potential to be random functions, we construct a random matrix model for the Hessian matrix, which is well-approximated by the sum of a Wigner matrix and two Wishart matrices. We compute the eigenvalue spectrum analytically from the free convolution of the constituent spectra and find that in typical configurations, a significant fraction of the eigenvalues are negative. Building on the Tracy-Widom law governing fluctuations of extreme eigenvalues, we determine t...
arXiv: High Energy Physics::Theory
free text keywords: High Energy Physics - Theory, Nuclear and High Energy Physics, Eigenvalues and eigenvectors, Hessian matrix, symbols.namesake, symbols, F-term, Matrix (mathematics), Physics, De Sitter universe, Quantum electrodynamics, Random matrix, Free convolution, Particle physics, Critical phenomena
Related Organizations
Funded by
NSF| Theoretical Particle Physics
  • Funder: National Science Foundation (NSF)
  • Project Code: 0757868
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Physics

[1] M. R. Douglas and S. Kachru, \Flux compacti cation," Rev. Mod. Phys. 79, 733-796 (2007) [hep-th/0610102].

[2] F. Denef and M. R. Douglas, \Distributions of nonsupersymmetric ux vacua," JHEP 0503, 061 (2005) [hep-th/0411183]. [OpenAIRE]

[3] C. Tracy and H. Widom, \Level-spacing distributions and the Airy kernel," Commun. Math. Phys. 159, 151-174, 1994.

[4] D. S. Dean and S. N. Majumdar, \Large Deviations of Extreme Eigenvalues of Random Matrices," Phys.Rev.Lett. 97 (2006) 160201, arXiv:cond-mat/0609651v2 [cond-mat.statmech].

[5] D. S. Dean and S. N. Majumdar, \Extreme Value Statistics of Eigenvalues of Gaussian Random Matrices," Phys. Rev. E 77, 041108 (2008), arXiv:0801.1730v1 [cond-mat.statmech].

[43] J. H. Schenker and H. Schulz-Baldes, \Semicircle law and freeness for random matrices with symmetries or correlations," Math. Res. Lett. 12 (2005), 531-542, arXiv:mathph/0505003v1. [OpenAIRE]

[44] S. Ashok and M. R. Douglas, \Counting ux vacua," JHEP 0401, 060 (2004) [hepth/0307049].

[45] M. R. Douglas, B. Shi man, and S. Zelditch, \Critical points and supersymmetric vacua, I, II, III," Commun. Math. Phys. 252 (2004) 325-358, arXiv:math/0402326v2 [math.CV]; J. Di . Geometry 72 (2006), 381-427, arXiv:math/0406089v3 [math.CV]; Commun. Math. Phys. 265:617-671, 2006, arXiv:math-ph/0506015v4.

[46] S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi, \De Sitter vacua in string theory," Phys. Rev. D 68, 046005 (2003) [hep-th/0301240].

[47] F. Denef, M. R. Douglas, and B. Florea, \Building a better racetrack," JHEP 0406, 034 (2004) [hep-th/0404257].

[48] F. Denef, M. R. Douglas, B. Florea, A. Grassi, and S. Kachru, \Fixing all moduli in a simple F-theory compacti cation," Adv. Theor. Math. Phys. 9, 861 (2005) [hep-th/0503124].

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue