publication . Preprint . 2018

Phase diffusion quantum entropy source on a silicon chip

Rudé, Miquel; Abellán, Carlos; Capdevila, Albert; Domenech, David; Mitchell, Morgan W.; Amaya, Waldimar; Pruneri, Valerio;
Open Access English
  • Published: 12 Apr 2018
Abstract
We report an accelerated laser phase diffusion quantum entropy source with all non-laser optical and optoelectronic elements implemented in silicon photonics. The device uses efficient and robust single-laser accelerated phase diffusion methods, and implements the whole quantum entropy source scheme including an unbalanced Mach-Zehnder interferometer with optimized splitting ratio, in a 0.5 mmx1 mm footprint. We demonstrate Gbps raw entropy-generation rates in a technology compatible with conventional CMOS fabrication techniques.
Subjects
arXiv: Physics::Optics
free text keywords: Quantum Physics
Funded by
EC| QUIC
Project
QUIC
Quantum simulations of insulators and conductors
  • Funder: European Commission (EC)
  • Project Code: 641122
  • Funding stream: H2020 | RIA
,
EC| ERIDIAN
Project
ERIDIAN
Ensured Randomness Integrity in Device-Independent Networks
  • Funder: European Commission (EC)
  • Project Code: 713682
  • Funding stream: H2020 | ERC | ERC-POC
Communities
FET H2020FET PROACT: Quantum simulation
FET H2020FET PROACT: Quantum simulations of insulators and conductors
Download from
52 references, page 1 of 4

1. X. Cai and X. Wang, IEEE Signal Process. Mag. 24, 27 (2007).

2. T. H. Click, A. Liu, and G. A. Kaminski, J. Comput. Chem. 32, 513 (2011).

3. C. Hall and B. Schneier, “Remote electronic gambling,” in “Computer Security Applications Conference, 1997. Proceedings., 13th Annual,” (IEEE, 1997), pp. 232-238.

4. C. E. Shannon, Bell Syst. Tech. J. 28, 656 (1949).

5. A. Tajima, A. Tanaka, W. Maeda, S. Takahashi, and A. Tomita, IEEE J. Sel. Topics in Quantum Electron. 13, 1031 (2007).

6. C. Abellán, W. Amaya, D. Mitrani, V. Pruneri, and M. W. Mitchell, Phys. Rev. Lett. 115, 250403 (2015).

7. B. Hensen, H. Bernien, A. Dréau, A. Reiserer, N. Kalb, M. Blok, J. Ruitenberg, R. Vermeulen, R. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, R. Hanson, Nature 526, 682 (2015).

8. M. Giustina, M. A. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-Å. Larsson, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittman, A. Zeilinger, Phys. Rev. Lett. 115, 250401 (2015).

9. L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, S. W. Nam, Phys. Rev. Lett. 115, 250402 (2015).

10. J. Von Neumann, Appl. Math Ser. 12, 36 (1951).

11. J. Rarity, P. Owens, and P. Tapster, J. Mod. Opt. 41, 2435 (1994).

12. T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, Rev. Sci. Instr. 71, 1675 (2000). [OpenAIRE]

13. M. Wahl, M. Leifgen, M. Berlin, T. Röhlicke, H.-J. Rahn, and O. Benson, Appl. Phys. Lett. 98, 171105 (2011).

14. C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Marquardt, and G. Leuchs, Nature Photon. 4, 711 (2010).

15. A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, Opt. Express 18, 18763 (2010).

52 references, page 1 of 4
Abstract
We report an accelerated laser phase diffusion quantum entropy source with all non-laser optical and optoelectronic elements implemented in silicon photonics. The device uses efficient and robust single-laser accelerated phase diffusion methods, and implements the whole quantum entropy source scheme including an unbalanced Mach-Zehnder interferometer with optimized splitting ratio, in a 0.5 mmx1 mm footprint. We demonstrate Gbps raw entropy-generation rates in a technology compatible with conventional CMOS fabrication techniques.
Subjects
arXiv: Physics::Optics
free text keywords: Quantum Physics
Funded by
EC| QUIC
Project
QUIC
Quantum simulations of insulators and conductors
  • Funder: European Commission (EC)
  • Project Code: 641122
  • Funding stream: H2020 | RIA
,
EC| ERIDIAN
Project
ERIDIAN
Ensured Randomness Integrity in Device-Independent Networks
  • Funder: European Commission (EC)
  • Project Code: 713682
  • Funding stream: H2020 | ERC | ERC-POC
Communities
FET H2020FET PROACT: Quantum simulation
FET H2020FET PROACT: Quantum simulations of insulators and conductors
Download from
52 references, page 1 of 4

1. X. Cai and X. Wang, IEEE Signal Process. Mag. 24, 27 (2007).

2. T. H. Click, A. Liu, and G. A. Kaminski, J. Comput. Chem. 32, 513 (2011).

3. C. Hall and B. Schneier, “Remote electronic gambling,” in “Computer Security Applications Conference, 1997. Proceedings., 13th Annual,” (IEEE, 1997), pp. 232-238.

4. C. E. Shannon, Bell Syst. Tech. J. 28, 656 (1949).

5. A. Tajima, A. Tanaka, W. Maeda, S. Takahashi, and A. Tomita, IEEE J. Sel. Topics in Quantum Electron. 13, 1031 (2007).

6. C. Abellán, W. Amaya, D. Mitrani, V. Pruneri, and M. W. Mitchell, Phys. Rev. Lett. 115, 250403 (2015).

7. B. Hensen, H. Bernien, A. Dréau, A. Reiserer, N. Kalb, M. Blok, J. Ruitenberg, R. Vermeulen, R. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, R. Hanson, Nature 526, 682 (2015).

8. M. Giustina, M. A. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-Å. Larsson, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittman, A. Zeilinger, Phys. Rev. Lett. 115, 250401 (2015).

9. L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, S. W. Nam, Phys. Rev. Lett. 115, 250402 (2015).

10. J. Von Neumann, Appl. Math Ser. 12, 36 (1951).

11. J. Rarity, P. Owens, and P. Tapster, J. Mod. Opt. 41, 2435 (1994).

12. T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, Rev. Sci. Instr. 71, 1675 (2000). [OpenAIRE]

13. M. Wahl, M. Leifgen, M. Berlin, T. Röhlicke, H.-J. Rahn, and O. Benson, Appl. Phys. Lett. 98, 171105 (2011).

14. C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Marquardt, and G. Leuchs, Nature Photon. 4, 711 (2010).

15. A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, Opt. Express 18, 18763 (2010).

52 references, page 1 of 4
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue