Share  Bookmark

 Download from


 Funded by

[1] Zhedanov A. S., Hidden Symmetry of AskeyWilson Polynomials, Theor and Math. Phys. 89 2 (1991) 11461157
[2] Granovsky Ya.A, Zhedanov A.S. and Lutzenko I.M., Quadratic algebra as a ”hidden” symmetry of the Hartmann potential, J.Phys.A:Math.Gen. 4 38873894 (1991)
[3] Granovskii Ya.I., Zhedanov A.S. and Lutzenko I.M., Quadratic algebras and dynamics in curved spaces. II. The Kepler problem Theoret. and Math. Phys. 89 (1992) 474480, Theoret. and Math. Phys. 91 (1992) 604612
[4] Granovskii Ya.I., Lutzenko I.M., Zhedanov A.S., Mutual integrability, quadratic algebras, and dynamical symmetry, Ann. Physics 217 (1992), 120.
[5] Granovskii Ya.I., Zhedanov A.S., Lutsenko I.M., Quadratic algebras and dynamics in curved space. I. Oscillator, Theoret. and Math. Phys. 91 (1992), 474480.
[6] Zhedanov A.S., Hidden symmetry algebra and overlap coefficients for two ringshaped potentials, J.Phys.A.:Math.gen. 26 46334641 (1993)
[7] Bonatsos D., Daskaloyannis C. and Kokkotas K., Quantumalgebraic description of quantum superintegrable systems in two dimensions, Phys.Rev. A 48 (1993) R3407R3410
[8] Bonatsos D., Daskaloyannis C. and Kokkotas K., Deformed oscillator algebras for twodimensional quantum superintegrable systems, Phys. Rev. A 50 (1994) 37003709