Quantum arithmetic with the Quantum Fourier Transform

Preprint English OPEN
Ruiz-Perez, Lidia; Garcia-Escartin, Juan Carlos;
  • Related identifiers: doi: 10.1007/s11128-017-1603-1
  • Subject: Quantum Physics
    acm: Hardware_ARITHMETICANDLOGICSTRUCTURES | ComputerSystemsOrganization_MISCELLANEOUS

The Quantum Fourier Transform offers an interesting way to perform arithmetic operations on a quantum computer. We review existing Quantum Fourier Transform adders and multipliers and propose some modifications that extend their capabilities. Among the new circuits, we ... View more
  • References (15)
    15 references, page 1 of 2

    1. P. W. Shor (1997) Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer . SIAM Journal on Computing, 26(5), 1484.

    2. V. Vedral, A. Barenco, and A. Ekert (1996) Quantum networks for elementary arithmetic operations. Physical Review A, 54(1), 147-153.

    3. D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill (1996) Efficient networks for quantum factoring. Physical Review A, 54, 1034-1063.

    4. S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton (2004) A new quantum ripple-carry addition circuit. arXiv preprint quant-ph/0410184.

    5. R. Van Meter and K. M. Itoh (2005) Fast quantum modular exponentiation. Physical Review A, 71, 052320.

    6. T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore (2006) A Logarithmic-depth Quantum Carry-lookahead Adder . Quantum Information & Computation, 6(4), 351-369.

    7. J. J. A´lvarez-S´anchez, J. V. A´lvarez-Bravo, and L. M. Nieto (2008) A quantum architecture for multiplying signed integers. Journal of Physics: Conference Series, 128(1), 012013.

    8. R. V. Meter, W. J. Munro, K. Nemoto, and K. M. Itoh (2008) Arithmetic on a Distributed-memory Quantum Multicomputer . Journal of Emerging Technologies in Computing Systems, 3(4), 2:1- 2:23.

    9. N. Wiebe and M. Roetteler (2014) Quantum arithmetic and numerical analysis using RepeatUntil-Success circuits. Techical Report MSR-TR-2014-103, Microsoft Research.

    10. B.-S. Choi and R. Van Meter (2012) A Θ(√n)-depth Quantum Adder on the 2D NTC Quantum Computer Architecture. Journal of Emerging Technologies in Computing Systems, 8(3), 24:1- 24:22.

  • Metrics
Share - Bookmark