A linearly implicit and local energy-preserving scheme for the sine-Gordon equation based on the invariant energy quadratization approach

Preprint English OPEN
Jiang, Chaolong; Cai, Wenjun; Wang, Yushun;
  • Subject: Mathematics - Numerical Analysis

In this paper, we develop a novel, linearly implicit and local energy-preserving scheme for the sine-Gordon equation. The basic idea is from the invariant energy quadratization approach to construct energy stable schemes for gradient systems, which are energy dispassion... View more
  • References (45)
    45 references, page 1 of 5

    [1] M.J. Ablowitz, B.M. Herbst, and C.M. Schober. On the numerical solution of the sine-Gordon equation. J. Comput. Phys., 131:354-367, 1997.

    [2] J. Argyris, M. Haase, and J.C. Heinrich. Finite element approximation to twodimensional sine-Gordon solitons. Comput. Methods Appl. Mech. Engrg., 86:1-26, 1991.

    [3] Z. Asgari and S.M. Hosseini. Numerical solution of two-dimensional sine-Gordon and MBE models using Fourier spectral and high order explicit time stepping methods. Comput. Phys. Commun., 184:565-572, 2013.

    [4] A.G. Bratsos. The solution of the two-dimensional sine-Gordon equation using the method of lines. J. Comput. Appl. Math., 85:241-252, 2008.

    [5] L. Brugnano, G. Frasca Caccia, and F. Iavernaro. Energy conservation issues in the numerical solution of the semilinear wave equation. Appl. Math. Comput., 270:842-870, 2015.

    [6] L. Brugnano and F. Iavernaro. Line Integral Methods for Conservative Problems. Chapman et Hall/CRC: Boca Raton, FL, USA, 2016.

    [7] W.J. Cai, H.C. Li, and Y.S. Wang. Partitioned averaged vector field methods. J. Comput. Phys., 370:25-42, 2018.

    [8] E. Celledoni, V. Grimm, R.I. McLachlan, D.I. McLaren, D. O′Neale, B. Owren, and G.R.W. Quispel. Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method. J. Comput. Phys., 231:6770-6789, 2012.

    [9] P.L. Christiansen and P.S. Lomdahl. Numerical solution of 2+1 dimensional sineGordon solitons. Phys. D, 2:482-494, 1981.

    [10] F. de la Hoz and F. Vadillo. Numerical simulation of the N-dimensional sine-Gordon equation via operational matrices. Comput. Phys. Commun., 183:864-879, 2012.

  • Related Organizations (2)
  • Metrics
Share - Bookmark