Mixed global anomalies and boundary conformal field theories

Article, Preprint English OPEN
Tokiro Numasawa; Satoshi Yamaguch;
(2018)
  • Publisher: SpringerOpen
  • Journal: Journal of High Energy Physics (issn: 1029-8479)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1007/JHEP11(2018)202
  • Subject: QC770-798 | Anomalies in Field and String Theories | Condensed Matter - Strongly Correlated Electrons | Nuclear and particle physics. Atomic energy. Radioactivity | Condensed Matter - Statistical Mechanics | Conformal Field Theory | Discrete Symmetries | High Energy Physics - Theory
    arxiv: High Energy Physics::Theory

Abstract We consider the relation between mixed global gauge gravitational anomalies and boundary conformal field theory in WZW models for simple Lie groups. The discrete symmetries of consideration are the centers of the simple Lie groups. These mixed anomalies prevent... View more
  • References (45)
    45 references, page 1 of 5

    2 Mixed global anomalies and orbifold constructions in CFTs 3 2.1 Coupling to external discrete gauge elds and mixed anomalies . . . . . . . . 3 2.2 SU(2)k WZW models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 General WZW model for simple Lie group G . . . . . . . . . . . . . . . . . . 7 2.4 Anomalies of subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 Cancellation of mixed global anomalies in G G0 type WZW models . . . . 11

    3 Boundary states and 't Hooft anomalies 12 3.1 SU(2)k cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 SU(3)1 cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 General WZW models for simple groups . . . . . . . . . . . . . . . . . . . . 15 3.3.1 An 1 cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.2 Bn cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.3 Cn cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.4 D2l+1 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.5 E6 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.6 E7 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Subgroup of the center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4.1 k = 1 SU(6) WZW model and Z2 subgroup of the center Z6 . . . . . 19 3.4.2 k = 1 SU(8) WZW model and Z2 subgroup of the center Z8 . . . . . 19 1 19

    [1] G. 't Hooft, \Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking," NATO Sci. Ser. B 59 (1980) 135{157.

    [2] C. Csaki and H. Murayama, \Discrete anomaly matching," Nucl. Phys. B515 (1998) 114{162, arXiv:hep-th/9710105 [hep-th].

    [3] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, \Symmetry protected topological orders and the group cohomology of their symmetry group," Phys. Rev. B87 no. 15, (2013) 155114, arXiv:1106.4772 [cond-mat.str-el].

    [4] C. G. Callan, Jr. and J. A. Harvey, \Anomalies and Fermion Zero Modes on Strings and Domain Walls," Nucl. Phys. B250 (1985) 427{436.

    [5] A. Kapustin and R. Thorngren, \Anomalies of discrete symmetries in three dimensions and group cohomology," Phys. Rev. Lett. 112 no. 23, (2014) 231602, arXiv:1403.0617 [hep-th].

    [6] A. Kapustin and R. Thorngren, \Anomalies of discrete symmetries in various dimensions and group cohomology," arXiv:1404.3230 [hep-th].

    [7] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, \Generalized Global Symmetries," JHEP 02 (2015) 172, arXiv:1412.5148 [hep-th].

    [8] R. Thorngren and C. von Keyserlingk, \Higher SPT's and a generalization of anomaly in- ow," arXiv:1511.02929 [cond-mat.str-el].

  • Related Organizations (6)
  • Metrics
Share - Bookmark