# Mixed global anomalies and boundary conformal field theories

- Published: 01 Nov 2018

[1] G. 't Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO [2] C. Csaki and H. Murayama, Discrete anomaly matching, Nucl. Phys. B 515 (1998) 114 [3] X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev. B 87 (2013) 155114 [21] N. Bultinck, R. Vanhove, J. Haegeman and F. Verstraete, Global anomaly detection in two-dimensional symmetry-protected topological phases, Phys. Rev. Lett. 120 (2018) 156601 [22] D.S. Freed and C. Vafa, Global anomalies on orbifolds, Commun. Math. Phys. 110 (1987) [23] G. Felder, K. Gawedzki and A. Kupiainen, Spectra of Wess-Zumino-Witten models with arbitrary simple groups, Commun. Math. Phys. 117 (1988) 127.

[24] O.M. Sule, X. Chen and S. Ryu, Symmetry-protected topological phases and orbifolds: Generalized Laughlin's argument, Phys. Rev. B 88 (2013) 075125 [arXiv:1305.0700] [25] C. Vafa, Modular Invariance and Discrete Torsion on Orbifolds, Nucl. Phys. B 273 (1986) [27] D. Gepner and E. Witten, String Theory on Group Manifolds, Nucl. Phys. B 278 (1986) 493 [28] P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York U.S.A. (1997).

[29] R. Dijkgraaf and E. Witten, Topological Gauge Theories and Group Cohomology, Commun.

[38] A. Roy and T. Quella, Chiral Haldane phases of SU(N ) quantum spin chains, Phys. Rev. B [39] F. Pollmann, A.M. Turner, E. Berg and M. Oshikawa, Entanglement spectrum of a topological phase in one dimension, Phys. Rev. B 81 (2010) 064439.

[40] K. Tanimoto and K. Totsuka, Symmetry-protected topological order in SU(N ) Heisenberg [41] J. Cardy and E. Tonni, Entanglement hamiltonians in two-dimensional conformal eld theory, J. Stat. Mech. 1612 (2016) 123103 [arXiv:1608.01283] [INSPIRE].

[42] V. Alba, P. Calabrese and E. Tonni, Entanglement spectrum degeneracy and the Cardy formula in 1 + 1 dimensional conformal eld theories, J. Phys. A 51 (2018) 024001 [44] S. Singh and G. Vidal, Symmetry protected entanglement renormalization, Phys. Rev. B 88 [45] G. Evenbly and G. Vidal, Algorithms for Entanglement Renormalization: Boundaries, Impurities and Interfaces, J. Stat. Phys. 157 (2014) 931 [arXiv:1312.0303].