Harbingers of Artin's Reciprocity Law. I. The Continuing Story of Auxiliary Primes

Preprint English OPEN
Lemmermeyer, Franz (2011)
  • Subject: 11A15, 11R37 | Mathematics - Number Theory | Mathematics - History and Overview

In this article we present the history of auxiliary primes used in proofs of reciprocity laws from the quadratic to Artin's reciprocity law. We also show that the gap in Legendre's proof can be closed with a simple application of Gauss's genus theory.
  • References (24)
    24 references, page 1 of 3

    Dirichlet's claims were slightly different, since he worked with forms (A, 2B, C)

    whose middle coefficients are even. If Q = (1, 0, 1), then h = 1, hence Thm. 3.4

    tells us that primes represented by Q have Dirichlet density 12 . [6] P.G.L. Dirichlet, Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren

    Primzahlen enth¨alt, Abh. Preuss. Akad. Wiss. (1837), 45-81; Werke I (1889), 313-342 [7] P.G.L. Dirichlet, U¨ber eine Eigenschaft der quadratischen Formen, Ber. K¨onigl. Preuss. Akad.

    Wiss. (1840), 49-52; Werke II, 499-502 [8] G. Frei, P. Roquette, Emil Artin und Helmut Hasse. Die Korrespondenz 1923-1934, Univer-

    sit¨atsverlag G¨ottingen 2008 [9] G. Frobenius, U¨ber Beziehungen zwischen den Primidealen eines algebraischen Zahlko¨rpers

    und den Substitutionen seiner Gruppe, Ber. Berl. Akad. Wiss. 1896 [10] Ph. Furtwa¨ngler, U¨ber die Reziprozita¨tsgesetze zwischen lten Potenzresten in algebraischen

    Zahlko¨rpern, wenn l eine ungerade Primzahl bedeutet, Math. Ann. 58 (1904), 1-50 [11] C.-F. Gauss, Disquisitiones Arithmeticae, 1801; German Transl. Arithmetische Untersuchun-

    gen, (H. Maser. ed.), Berlin 1889 [12] H. Hasse, Klassenk¨orpertheorie, Marburg Lectures 1933; Physica Verlag 1967 [13] H. Hasse, Die Struktur der R. Brauerschen Algebrenklassengruppe, Math. Ann. 107 (1933),

    731-760 [14] D. Hilbert, Die Theorie der algebraischen Zahlen (Zahlbericht), Jahresber. DMV 4 (1897),

  • Metrics
    No metrics available
Share - Bookmark