On the $a$-points of the derivatives of the Riemann zeta function
- Published: 12 Jun 2016
[1] B. C. Berndt, The number of zeros for ζ(k)(s), J. Lond. Math. Soc. (2) 2 (1970), 577-580.
[2] H. Bohr and E. Landau, Ein Satz u¨ber Dirichletsche Reihen mit Anwendung auf die ζ-Funktion und die L-Funktion, Rendiconti del Circolo Matematico di Palermo 37 (1914), 269-272.
[3] H. Bohr, E. Landau, J. E. Littlewood, Sur la fonction ζ(s) dans le voisinage de la droite σ = 21 , Bull. de l'Acad. royale de Belgique (1913), 3-35.
[4] H. Ki and Y. Lee, Zeros of the derivatives of the Riemann zeta-function, Functiones et Approximatio 47 (2012), 79-87.
[5] E. Landau, U¨ber die Nullstellen der Zetafunktion, Math. Ann. 71, (1912), 548-564.
[6] J. Lee, T. Onozuka and A. I. Suriajaya, Some probabilistic value distributions of zeta and L-functions, preprint.
[7] N. Levinson, Almost all roots of ζ(s) = a are arbitrarily close to σ = 1/2, Proc. Nat. Acad. Sci. USA 72 No. 4, (1975), 1322-1324. [OpenAIRE]
[8] N. Levinson and H. L. Montgomery, Zeros of the derivatives of the Riemann zeta-function, Acta Math. 133, (1974), 49-65. [OpenAIRE]
[9] R. Spira, Zero-free regions of ζ(k)(s), J. London Math. Soc. 40, (1965), 677- 682.
[10] R. Spira, Another zero-free region for ζ(k)(s), Proc. Amer. Math. Soc. 26, (1970), 246-247. [OpenAIRE]
[11] J. Steuding, One hundred years uniform distribution modulo one and recent apprications to Riemann's zeta function, Topics in Math. Analysis and Applications 94, (2014), 659-698. [OpenAIRE]
[12] E. C. Titchmarsh, The theory of the Riemann zeta-function, second ed. (revised by D. R. Heath-Brown), Oxford Univ. Press, 1986.