Share  Bookmark

 Download from


[1] Y. Polyanskiy, H. V. Poor, and S. Verdu´, “Channel coding rate in the finite blocklength regime,” Information Theory, IEEE Transactions on, vol. 56, no. 5, pp. 23072359, 2010.
[2] Y. Polyanskiy, “Saddle point in the minimax converse for channel coding,” Information Theory, IEEE Transactions on, vol. 59, no. 5, pp. 25762595, 2013.
[3] N. Elkayam and M. Feder, “Achievable and converse bounds over a general channel and general decoding metric,” arXiv preprint arXiv:1411.0319, 2014. [Online]. Available: http://www.eng.tau.ac.il/∼elkayam/FiniteBlockLen.pdf
[4] . (2016) Variational formulas for the power of the binary hypothesis testing problem with applications. [Online]. Available: http://www.eng.tau.ac.il/∼elkayam/Binary ISIT.pdf
[5] K. Fan, “Minimax theorems,” Proceedings of the National Academy of Sciences of the United States of America, vol. 39, no. 1, p. 42, 1953.
[6] W. Matthews, “A linear program for the finite block length converse of polyanskiypoorverdu´ via nonsignaling codes,” Information Theory, IEEE Transactions on, vol. 58, no. 12, pp. 70367044, 2012.
[7] I. Csisza´r, “The method of types [information theory],” Information Theory, IEEE Transactions on, vol. 44, no. 6, pp. 25052523, 1998.
[8] I. Csisza´r and J. Ko¨rner, Information Theory: Coding Theorems for Discrete Memoryless Systems. Cambridge University Press, 2011. [Online]. Available: http://books.google.co.il/books?id=2gsLkQlb8JAC