[1] Y. Polyanskiy, H. V. Poor, and S. Verdu´, “Channel coding rate in the finite blocklength regime,” Information Theory, IEEE Transactions on, vol. 56, no. 5, pp. 2307-2359, 2010.

[2] Y. Polyanskiy, “Saddle point in the minimax converse for channel coding,” Information Theory, IEEE Transactions on, vol. 59, no. 5, pp. 2576-2595, 2013.

[3] N. Elkayam and M. Feder, “Achievable and converse bounds over a general channel and general decoding metric,” arXiv preprint arXiv:1411.0319, 2014. [Online]. Available: http://www.eng.tau.ac.il/∼elkayam/FiniteBlockLen.pdf

[4] --. (2016) Variational formulas for the power of the binary hypothesis testing problem with applications. [Online]. Available: http://www.eng.tau.ac.il/∼elkayam/Binary ISIT.pdf

[5] K. Fan, “Minimax theorems,” Proceedings of the National Academy of Sciences of the United States of America, vol. 39, no. 1, p. 42, 1953.

[6] W. Matthews, “A linear program for the finite block length converse of polyanskiy-poor-verdu´ via nonsignaling codes,” Information Theory, IEEE Transactions on, vol. 58, no. 12, pp. 7036-7044, 2012.

[7] I. Csisza´r, “The method of types [information theory],” Information Theory, IEEE Transactions on, vol. 44, no. 6, pp. 2505-2523, 1998.

[8] I. Csisza´r and J. Ko¨rner, Information Theory: Coding Theorems for Discrete Memoryless Systems. Cambridge University Press, 2011. [Online]. Available: http://books.google.co.il/books?id=2gsLkQlb8JAC