publication . Article . Preprint . 2018

Exoplanet Biosignatures: Future Directions

Walker, Sara I.; Bains, William; Cronin, Leroy; DasSarma, Shiladitya; Danielache, Sebastian; Domagal-Goldman, Shawn; Kacar, Betul; Kiang, Nancy Y.; Lenardic, Adrian; Reinhard, Christopher T.; ...
Open Access English
  • Published: 01 Jun 2018
  • Publisher: Mary Ann Liebert, Inc.
Abstract
Abstract We introduce a Bayesian method for guiding future directions for detection of life on exoplanets. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from better understanding stellar environment, planetary climate and geophysics, geochemical cycling, the universalities of physics and chemistry, the contingencies of evolutionary history, the properties of life as an emergent complex system, and the mechanisms driving the emergence of life. We provide examples for how the Bayesian formalism could guide future search strategies, including determining observations to prioritize or ...
Subjects
arXiv: Astrophysics::Earth and Planetary Astrophysics
free text keywords: Special Collection: Exoplanet BiosignaturesGuest Editors: Mary N. Parenteau, Nancy Y. Kiang, Shawn Domagal-Goldman (in reverse alphabetical order)Review Articles, Astrophysics - Earth and Planetary Astrophysics, Agricultural and Biological Sciences (miscellaneous), Space and Planetary Science, Prior probability, Physics, Exoplanet, Conditional probability, Data science, Generalization, Astronomy, Bayesian probability, Ambiguity, media_common.quotation_subject, media_common, Life detection
202 references, page 1 of 14

4 P(DATA|ABIOTIC)............................................................................................................................. 26 4.1 STELLAR ENVIRONMENT .............................................................................................................. 27 4.2 CLIMATE AND GEOPHYSICS.......................................................................................................... 32 4.2.1 Coupled Tectonic-Climate Models ........................................................................................ 36 4.2.2 Community GCM Projects for Generating Ensemble Statistics for P(data|abiotic) and P(data|life) ......................................................................................................................................... 38 4.3 GEOCHEMICAL ENVIRONMENT..................................................................................................... 40 4.3.1 Anticipating the unexpected: Statistical approaches to characterizing atmospheres of nonEarth-like worlds................................................................................................................................ 42

Amthor J.S. (2010) From sunlight to phytomass: On the potential efficiency of converting solar radiation to phyto-energy. New Phytologist 188:939-959. [OpenAIRE]

Bains, W. and Seager, S. (2012) A Combinatorial approach to biochemical space: Description and application to the redox distribution of metabolism. Astrobiology 12: 271-281.

Bains, W. and Schulze-Makuch, D. (2016) The cosmic zoo: The (near) inevitability of the evolution of complex, macroscopic life. Life 6:25 doi:10.3390/life6030025 [OpenAIRE]

Baldridge, A.M., Hook, S.J., Grove, C.I., and Rivera, G. (2009) The ASTER spectral library version 2.0. Remote Sensing of Environment 113: 711-715. [OpenAIRE]

Barnes R. and Heller R. (2013) Habitable planets around white and brown dwarfs: The perils of a cooling primary. Astrobiology 13:279-291.

Benner, S.A., Sassi, S.O., and Gaucher, E.A. (2007) Molecular paleoscience: Systems biology from the past. Adv Enzymol Relat Areas Mol Biol 75:1-132.

Benner, S. A. (2010). Defining life. Astrobiology, 10(10), 1021-1030.

Bennett, C. (1988). Logical depth and physical complexity. In The Universal Turing Machine: a Half-Century Survey, edited by Herken, Rolf, Oxford University Press, pp 227-257.

Bercovici, D. and Ricard, Y. (2016) Grain-damage hysteresis and plate-tectonic states. Phys. Earth Planet. Int. 253:31-47. [OpenAIRE]

Berdyugina, S.V., Kuhn, J.R., Harrington, D.M., Šantl-Temkiv, T., and Messersmith, E.J. (2016) Remote sensing of life: Polarimetric signatures of photosynthetic pigments as sensitive biomarkers. International Journal of Astrobiology 15:45-56.

Bettencourt, L.M. (2013). The origins of scaling in cities. Science 340:1438-1441.

Björn L.O. (1976) Why are plants green - relationships between pigment absorption and photosynthetic efficiency. Photosynthetica 10:121-129.

Björn L.O., Papageorgiou G.C., Blankenship R.E., and Govindjee. (2009) A viewpoint: Why chlorophyll a? Photosynthesis Research 99:85-98.

Blankenship R. E., and Hartman H. (1998) The origin and evolution of oxygenic photosynthesis. Transactions in Biological Science (TIBS), 23: 94-97. [OpenAIRE]

202 references, page 1 of 14
Related research
Abstract
Abstract We introduce a Bayesian method for guiding future directions for detection of life on exoplanets. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from better understanding stellar environment, planetary climate and geophysics, geochemical cycling, the universalities of physics and chemistry, the contingencies of evolutionary history, the properties of life as an emergent complex system, and the mechanisms driving the emergence of life. We provide examples for how the Bayesian formalism could guide future search strategies, including determining observations to prioritize or ...
Subjects
arXiv: Astrophysics::Earth and Planetary Astrophysics
free text keywords: Special Collection: Exoplanet BiosignaturesGuest Editors: Mary N. Parenteau, Nancy Y. Kiang, Shawn Domagal-Goldman (in reverse alphabetical order)Review Articles, Astrophysics - Earth and Planetary Astrophysics, Agricultural and Biological Sciences (miscellaneous), Space and Planetary Science, Prior probability, Physics, Exoplanet, Conditional probability, Data science, Generalization, Astronomy, Bayesian probability, Ambiguity, media_common.quotation_subject, media_common, Life detection
202 references, page 1 of 14

4 P(DATA|ABIOTIC)............................................................................................................................. 26 4.1 STELLAR ENVIRONMENT .............................................................................................................. 27 4.2 CLIMATE AND GEOPHYSICS.......................................................................................................... 32 4.2.1 Coupled Tectonic-Climate Models ........................................................................................ 36 4.2.2 Community GCM Projects for Generating Ensemble Statistics for P(data|abiotic) and P(data|life) ......................................................................................................................................... 38 4.3 GEOCHEMICAL ENVIRONMENT..................................................................................................... 40 4.3.1 Anticipating the unexpected: Statistical approaches to characterizing atmospheres of nonEarth-like worlds................................................................................................................................ 42

Amthor J.S. (2010) From sunlight to phytomass: On the potential efficiency of converting solar radiation to phyto-energy. New Phytologist 188:939-959. [OpenAIRE]

Bains, W. and Seager, S. (2012) A Combinatorial approach to biochemical space: Description and application to the redox distribution of metabolism. Astrobiology 12: 271-281.

Bains, W. and Schulze-Makuch, D. (2016) The cosmic zoo: The (near) inevitability of the evolution of complex, macroscopic life. Life 6:25 doi:10.3390/life6030025 [OpenAIRE]

Baldridge, A.M., Hook, S.J., Grove, C.I., and Rivera, G. (2009) The ASTER spectral library version 2.0. Remote Sensing of Environment 113: 711-715. [OpenAIRE]

Barnes R. and Heller R. (2013) Habitable planets around white and brown dwarfs: The perils of a cooling primary. Astrobiology 13:279-291.

Benner, S.A., Sassi, S.O., and Gaucher, E.A. (2007) Molecular paleoscience: Systems biology from the past. Adv Enzymol Relat Areas Mol Biol 75:1-132.

Benner, S. A. (2010). Defining life. Astrobiology, 10(10), 1021-1030.

Bennett, C. (1988). Logical depth and physical complexity. In The Universal Turing Machine: a Half-Century Survey, edited by Herken, Rolf, Oxford University Press, pp 227-257.

Bercovici, D. and Ricard, Y. (2016) Grain-damage hysteresis and plate-tectonic states. Phys. Earth Planet. Int. 253:31-47. [OpenAIRE]

Berdyugina, S.V., Kuhn, J.R., Harrington, D.M., Šantl-Temkiv, T., and Messersmith, E.J. (2016) Remote sensing of life: Polarimetric signatures of photosynthetic pigments as sensitive biomarkers. International Journal of Astrobiology 15:45-56.

Bettencourt, L.M. (2013). The origins of scaling in cities. Science 340:1438-1441.

Björn L.O. (1976) Why are plants green - relationships between pigment absorption and photosynthetic efficiency. Photosynthetica 10:121-129.

Björn L.O., Papageorgiou G.C., Blankenship R.E., and Govindjee. (2009) A viewpoint: Why chlorophyll a? Photosynthesis Research 99:85-98.

Blankenship R. E., and Hartman H. (1998) The origin and evolution of oxygenic photosynthesis. Transactions in Biological Science (TIBS), 23: 94-97. [OpenAIRE]

202 references, page 1 of 14
Related research
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue