## Several applications of Cartwright-Field's inequality

*Minculete, Nicuşor*;

*Furuichi, Shigeru*;

- Subject: Mathematics - Classical Analysis and ODEs | Mathematics - Functional Analysis

- References (12) 12 references, page 1 of 2
- 1
- 2

[1] T. M. APOSTOL, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.

[2] D. I. CARTWRIGHT, M. J. FIELD, A refinement of the arithmetic mean-geometric mean inequality, Proc. Amer. Math. Soc., Vol.71(1978), pp.36-38.

[3] S. FURUICHI, On refined Young inequalities and reverse inequalities, J. Math. Ineq., Vol.5(2011), pp.21-31.

[4] S. FURUICHI, N. MINCULETE, Alternative reverse inequalities for Young's inequality, arXiv:1103.1937.

[5] T.FURUTA, M.YANAGIDA, Generalized means and convexity of inversion for positive operators, Amer.Math.Monthly, Vol.105 (1998),pp.258-259.

[6] G. H. HARDY, J. E. LITLLWOOD, G. POLYA, Inequalities, Cambrige University Press, 1934.

[7] F. KUBO, T.ANDO, Means of positive operators, Math. Ann.,Vol.264(1980),pp.205-224.

[8] M. NATHANSON, Elementary Methods in Number Theory, Springer, New York, 2006.

[9] C. P. NICULESCU, L.-E. PERSSON, Convex Functions and Their Applications, CMS Books in Mathematics, Vol. 23, Springer-Verlag, New York, 2006.

[10] O. T. POP, About Bergstr¨om's inequality, Journal of Mathematical Inequalities, Vol. 3(2009), pp.213-216.

- Metrics 1views in OpenAIRE0views in local repository0downloads in local repository

- Download from

- Cite this publication