publication . Conference object . Preprint . 2012

quantum annealing and quantum fluctuation effect in frustrated ising systems

Tanaka, Shu; Tamura, Ryo;
Open Access
  • Published: 27 Feb 2012
  • Publisher: WORLD SCIENTIFIC
Abstract
Quantum annealing method has been widely attracted attention in statistical physics and information science since it is expected to be a powerful method to obtain the best solution of optimization problem as well as simulated annealing. The quantum annealing method was incubated in quantum statistical physics. This is an alternative method of the simulated annealing which is well-adopted for many optimization problems. In the simulated annealing, we obtain a solution of optimization problem by decreasing temperature (thermal fluctuation) gradually. In the quantum annealing, in contrast, we decrease quantum field (quantum fluctuation) gradually and obtain a solut...
Subjects
arXiv: Condensed Matter::Materials Science
free text keywords: Quantum annealing, Ising model, Quantum mechanics, Ising spin, Optimization problem, Simulated annealing, Quantum, Physics, Thermal, Quantum fluctuation, Condensed matter physics, Condensed Matter - Disordered Systems and Neural Networks, Condensed Matter - Statistical Mechanics, Quantum Physics
75 references, page 1 of 5

1. E. Ising, Z. Physik 31, 253 (1925).

2. M. M´ezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, 1987).

3. K. H. Fischer and J. A. Hertz, Spin Glasses (Cambridge University Press, 1993).

4. A. P. Young, Spin Glasses and Random Fields (World Scientific, 1998).

5. S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, Science 220, 671 (1983).

6. S. Kirkpatrick, J. Stat. Phys. 34, 975 (1984).

7. S. Geman and D. Geman, IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721 (1984).

8. A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson, and J. D. Doll, Chem. Phys. Lett. 219 343 (1994).

9. T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355 (1998).

10. J. Brooke, D. Bitko, T. F. Rosenbaum, and G. Aeppli, Science 284, 779 (1999).

11. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, Science 292, 472 (2001).

12. G. E. Santoro, R. Martonˇ´ak, E. Tosatti, and R. Car, Science 295, 2427 (2002).

13. R. Marton´ak, G. E. Santoro, and E. Tosatti, Phys. Rev. E 70, 057701 (2004).

14. D. A. Battaglia, G. E. Santoro, and E. Tosatti, Phys. Rev. E 71, 066707 (2005).

15. S. Suzuki and M. Okada, J. Phys. Soc. Jpn. 74, 1649 (2005).

75 references, page 1 of 5
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue