publication . Preprint . 2012

Young module multiplicities and classifying the indecomposable Young permutation modules

Gill, Christopher C.;
Open Access English
  • Published: 28 Mar 2012
Comment: 22 pages
arXiv: Mathematics::Representation TheoryMathematics::Combinatorics
free text keywords: Mathematics - Representation Theory, 20C30
Download from
18 references, page 1 of 2

[1] R. Brauer. On a conjecture by Nakayama. Trans. Roy. Soc. Canada. Sect. III. (3), 41:11-19, 1947.

[2] M. Brou´e. On Scott modules and p-permutation modules: an approach through the Brauer morphism. Proc. Amer. Math. Soc., 93(3):401-408, 1985. [OpenAIRE]

[3] S. Donkin. On tilting modules for algebraic groups. Math. Z., 212(1):39-60, 1993. [OpenAIRE]

[4] K. Erdmann. Young modules for symmetric groups. J. Aust. Math. Soc., 71(2):201-210, 2001. Special issue on group theory.

[5] M. Fang, A. Henke, and S. Koenig. Comparing GLn-representations by characteristic-free isomorphisms between generalized Schur algebras. Forum Math., 20(1):45-79, 2008. With an appendix by Stephen Donkin.

[6] J. Grabmeier. Unzerlegbare Moduln mit trivialer Youngquelle und Darstellungstheorie der Schuralgebra. Bayreuth. Math. Schr., 20:9-152, 1985.

[7] J. A. Green. On the indecomposable representations of a finite group. Math. Z., 70:430-445, 1958/59.

[8] J. A. Green. Polynomial representations of GLn, volume 830 of Lecture Notes in Mathematics. Springer, Berlin, 2007. With an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, Green and M. Schocker.

[9] A. Henke. On p-Kostka numbers and Young modules. European J. Combin, 26(6):923-942, 2005.

[10] A. Henke and S. Koenig. Relating polynomial GL(n)-representations in different degrees. J. Reine Angew. Math., 551:219-235, 2002.

[11] G. James. Representation Theory of the Symmetric Group. Number 682 in Lecture notes in mathematics. Springer, 1978.

[12] G. James. Trivial source modules for symmetric groups. Arch. Math. (Basel), 41(4):294-300, 1983.

[13] G. James and A. Kerber. The representation theory of the symmetric group, volume 16 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Co., Reading, Mass., 1981.

[14] P. Landrock. Finite group algebras and their modules, volume 84 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1983. [OpenAIRE]

[15] I.G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, second edition, 1995.

18 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue