Convolutional Codes with Maximum Column Sum Rank for Network Streaming

Preprint English OPEN
Mahmood, Rafid; Badr, Ahmed; Khisti, Ashish;
(2015)
  • Subject: Computer Science - Information Theory
    arxiv: Computer Science::Information Theory
    acm: Data_CODINGANDINFORMATIONTHEORY

The column Hamming distance of a convolutional code determines the error correction capability when streaming over a class of packet erasure channels. We introduce a metric known as the column sum rank, that parallels column Hamming distance when streaming over a networ... View more
  • References (27)
    27 references, page 1 of 3

    [1] R. Mahmood, A. Badr, and A. Khisti, “Convolutional codes in rank metric for network streaming,” in IEEE Int. Symp. Inf. Theory (ISIT), 2015, to appear in 2015.

    [2] E. Martinian and C.-E. W. Sundberg, “Burst erasure correction codes with low decoding delay,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2494-2502, 2004.

    [3] D. Leong, A. Qureshi, and T. Ho, “On coding for real-time streaming under packet erasures,” in IEEE Int. Symp. Inf. Theory (ISIT), 2013, pp. 1012-1016.

    [4] A. Badr, P. Patil, A. Khisti, W. Tan, and J. Apostolopoulos, “Layered constructions for low-delay streaming codes,” IEEE Trans. Inf. Theory, to appear in 2015.

    [5] V. Tomas, J. Rosenthal, and R. Smarandache, “Decoding of convolutional codes over the erasure channel,” IEEE Trans. Inf. Theory, vol. 58, no. 1, pp. 90-108, 2012.

    [6] M. Ellis, D. P. Pezaros, and C. Perkins, “Performance analysis of ALFEC for RTP-based streaming video traffic to residential users,” in IEEE Packet Video Workshop, 2012.

    [7] H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache, “StronglyMDS convolutional codes,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 584-598, 2006.

    [8] R. Hutchinson, R. Smarandache, and J. Trumpf, “Superregular matrices and the construction of convolutional codes having a maximum distance profile,” Lin. Algebra and App., vol. 428, pp. 2585-2596, 2008.

    [9] P. Almeida, D. Napp, and R. Pinto, “A new class of super regular matrices and MDP convolutional codes,” Lin. Algebra and App., vol. 439, pp. 2145-2157, 2013.

    [10] R. Ahlswede, N. Cai, S. Li, and R. W. Yeung, “Network information flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204-1216, 2000.

  • Metrics
Share - Bookmark