publication . Preprint . 2016

Point-like bounding chains in open Gromov-Witten theory

Solomon, Jake P.; Tukachinsky, Sara B.;
Open Access English
  • Published: 08 Aug 2016
We present a solution to the problem of defining open Gromov-Witten invariants with boundary constraints for a Lagrangian submanifold of arbitrary dimension. Previously, such invariants were known only in dimensions $2$ and $3$ from the work of Welschinger. Our approach does not require the Lagrangian to be fixed by an anti-symplectic involution, but can use such an involution, if present, to obtain stronger results. Also, non-trivial invariants are defined for broader classes of interior constraints and Lagrangian submanifolds than previously possible even in the presence of an anti-symplectic involution. The invariants of the present work specialize to invaria...
arXiv: Mathematics::Symplectic Geometry
free text keywords: Mathematics - Symplectic Geometry, High Energy Physics - Theory, Mathematics - Algebraic Geometry, 53D45, 53D37 (Primary) 14N35, 14N10, 53D12 (Secondary)
Related Organizations
Funded by
Three ideas in open Gromov-Witten theory
  • Funder: European Commission (EC)
  • Project Code: 337560
  • Funding stream: FP7 | SP2 | ERC
Download from
24 references, page 1 of 2

m (eb(l) I L 3 + ( ) + 2l)

[1] M. Aganagic and C. Vafa, Mirror Symmetry, D-Branes and Counting Holomorphic Discs, ArXiv e-prints (2000), arXiv:hep-th/0012041. [OpenAIRE]

[2] P. Biran and O. Cornea, Lagrangian topology and enumerative geometry, Geom. Topol. 16 (2012), no. 2, 963{1052, doi:10.2140/gt.2012.16.963.

[3] E. Brugalle and P. Georgieva, Pencils of quadrics and Gromov-Witten-Welschinger invariants of CP3, Math. Ann. 365 (2016), no. 1-2, 363{380, doi:10.1007/s00208-016-1398-x. [OpenAIRE]

[4] E. Brugalle and G. Mikhalkin, Enumeration of curves via oor diagrams, C. R. Math. Acad. Sci. Paris 345 (2007), no. 6, 329{334, doi:10.1016/j.crma.2007.07.026.

[5] E. Brugalle and G. Mikhalkin, Floor decompositions of tropical curves: the planar case, Proceedings of Gokova Geometry-Topology Conference 2008, Gokova Geometry/Topology Conference (GGT), Gokova, 2009, pp. 64{90. [OpenAIRE]

[6] C.-H. Cho, Counting real J -holomorphic discs and spheres in dimension four and six, J. Korean Math. Soc. 45 (2008), no. 5, 1427{1442, doi:10.4134/JKMS.2008.45.5.1427.

[7] C.-H. Cho, On the counting of holomorphic discs in toric Fano manifolds, Adv. Geom. 13 (2013), no. 2, 191{210, doi:10.1515/advgeom-2012-0041.

[8] M. Farajzadeh Tehrani, Counting genus-zero real curves in symplectic manifolds, Geom. Topol. 20 (2016), no. 2, 629{695, Part II jointly authored with Aleksey Zinger, doi:10.2140/gt.2016.20.629.

[9] K. Fukaya, Cyclic symmetry and adic convergence in Lagrangian Floer theory, Kyoto J. Math. 50 (2010), no. 3, 521{590, doi:10.1215/0023608X-2010-004.

[10] K. Fukaya, Counting pseudo-holomorphic discs in Calabi-Yau 3-folds, Tohoku Math. J. (2) 63 (2011), no. 4, 697{727, doi:10.2748/tmj/1325886287.

[11] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian intersection Floer theory: anomaly and obstruction. Parts I,II, AMS/IP Studies in Advanced Mathematics, vol. 46, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2009.

[12] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Floer theory on compact toric manifolds, I, Duke Math. J. 151 (2010), no. 1, 23{174, doi:10.1215/00127094-2009-062.

[13] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Floer theory on compact toric manifolds II: bulk deformations, Selecta Math. (N.S.) 17 (2011), no. 3, 609{711, doi:10.1007/s00029-011-0057-z.

[14] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Floer theory and mirror symmetry on compact toric manifolds, Asterisque (2016), no. 376, vi+340.

24 references, page 1 of 2
Any information missing or wrong?Report an Issue