The Gauss map of pseudo-algebraic minimal surfaces in $\mathbf{R}^{4}$

Preprint English OPEN
Kawakami, Yu;
(2006)
  • Subject: 53A10 (Primary) | 30D35, 30F10 (Secondary) | Mathematics - Complex Variables | Mathematics - Differential Geometry

In this paper, we prove effective estimates for the number of exceptional values and the totally ramified value number for the Gauss map of pseudo-algebraic minimal surfaces in Euclidean four-space and give a kind of unicity theorem.
  • References (18)
    18 references, page 1 of 2

    [1] C.C. Chen, On the image of generalized Gauss map of a complete minimal surface in R4, Pacific J. Math., 102 (1982), 9 - 14.

    [2] S.S. Chern and R. Osserman, Complete minimal surface in Euclidean n-space, J. Analyse. Math., 19 (1967), 15 - 34.

    [3] H. Fujimoto, On the number of exceptional values of the Gauss map of minimal surfaces, J. Math. Soc. Japan, 40 (1988), 235 - 247.

    [4] H. Fujimoto, On the Gauss curvature of minimal surfaces, J. Math. Soc. Japan, 44 (1992), 427-439.

    [5] H. Fujimoto, Unicity theorems for the Gauss maps of complete minimal surfaces, J. Math. Soc. Japan, 45 (1993), 481 - 487.

    [6] H. Fujimoto, Unicity theorems for the Gauss maps of complete minimal surfaces, II, Kodai. Math. J., 16 (1993), 335 - 354.

    [7] H. Fujimoto, Value Distribution Theory of the Gauss Map of Minimal Surfaces in Rm, Braunschweig/Wiesbaden, Vieweg, 1993.

    [8] A. Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv., 32 (1957), 13 - 72.

    [9] D.A. Hoffman and R.Osserman, The geometry of the generalized Gauss map, Memoirs. Amer. Math. Soc., 236 (1980).

    [10] D.A. Hoffman and R.Osserman, The Gauss map of surfaces in R3 and R4, Proc. London Math. Soc., 50 (1985)

  • Similar Research Results (2)
  • Metrics
Share - Bookmark