publication . Preprint . 2006

The Gauss map of pseudo-algebraic minimal surfaces in $\mathbf{R}^{4}$

Kawakami, Yu;
Open Access English
  • Published: 14 Mar 2006
Abstract
Comment: 11page, corrected some typos and English. to appear in Mathematische Nachrichten
Subjects
free text keywords: Mathematics - Differential Geometry, Mathematics - Complex Variables, 53A10 (Primary), 30D35, 30F10 (Secondary)
Download from
18 references, page 1 of 2

[1] C.C. Chen, On the image of generalized Gauss map of a complete minimal surface in R4, Pacific J. Math., 102 (1982), 9 - 14.

[2] S.S. Chern and R. Osserman, Complete minimal surface in Euclidean n-space, J. Analyse. Math., 19 (1967), 15 - 34.

[3] H. Fujimoto, On the number of exceptional values of the Gauss map of minimal surfaces, J. Math. Soc. Japan, 40 (1988), 235 - 247.

[4] H. Fujimoto, On the Gauss curvature of minimal surfaces, J. Math. Soc. Japan, 44 (1992), 427-439.

[5] H. Fujimoto, Unicity theorems for the Gauss maps of complete minimal surfaces, J. Math. Soc. Japan, 45 (1993), 481 - 487.

[6] H. Fujimoto, Unicity theorems for the Gauss maps of complete minimal surfaces, II, Kodai. Math. J., 16 (1993), 335 - 354.

[7] H. Fujimoto, Value Distribution Theory of the Gauss Map of Minimal Surfaces in Rm, Braunschweig/Wiesbaden, Vieweg, 1993.

[8] A. Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv., 32 (1957), 13 - 72.

[9] D.A. Hoffman and R.Osserman, The geometry of the generalized Gauss map, Memoirs. Amer. Math. Soc., 236 (1980). [OpenAIRE]

[10] D.A. Hoffman and R.Osserman, The Gauss map of surfaces in R3 and R4, Proc. London Math. Soc., 50 (1985)

[11] L. Jin and M. Ru, Algebraic curves and the Gauss map of algebraic minimal surfaces, Differential Geometry and its Applications, 25 (2007), 701 - 712.

[12] Y. Kawakami, On the totally ramified value number of the Gauss map of minimal surfaces, Proc. Japan Acad. 82, Ser. A (2006), 1 - 3.

[13] Y. Kawakami, R. Kobayashi and R. Miyaoka, The Gauss map of pseudo-algebraic minimal surfaces, to appear in Forum Mathematicum, math.DG/0511543.

[14] X. Mo and R. Osserman, On the Gauss map and total curvature of complete minimal surfaces and an extension of Fujimoto's theorem, J. Differemtial Geometry, 31 (1990), 343-355. [OpenAIRE]

[15] R. Nevanlinna, Analytic Function, Translated from the second German edition by Phillip Emig. Die Grundlehren der mathematischen Wissenschaften, New York, Springer, 1970.

18 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue