publication . Preprint . 2016

Diffusion and Perfusion Magnetic Resonance Imaging:Fundamentals and Advances

Assili, Sanam;
Open Access English
  • Published: 21 Nov 2016
Abstract
Over the past few decades, magnetic resonance imaging has been utilized as a powerful imaging modality to evaluate the structure and function of various organs in the human body,such as the brain. Additionally, diffusion and perfusion MR imaging have been increasingly used in neurovascular clinical applications. In diffusion-weighted magnetic resonance imaging, the mobility of water molecules is explored in order to obtain information about the microscopic behavior of the tissues. In contrast, perfusion weighted imaging uses tracers to exploit hemodynamic status, which enables researchers and clinicians to consider this imaging modality as an early biomarker of ...
Subjects
free text keywords: Physics - Medical Physics
Download from
23 references, page 1 of 2

[2] A. B. Chakravarthy, V. G. Abramson, and J. Farley, “Multiparametric magnetic resonance imaging for predicting pathological response after the first cycle of neoadjuvant chemotherapy in breast cancer,” 2014.

[3] C. J. Galba´n, S. K. Mukherji, T. L. Chenevert, C. R. Meyer, D. A. Hamstra, P. H. Bland, T. D. Johnson, B. A. Moffat, A. Rehemtulla, A. Eisbruch, et al., “A feasibility study of parametric response map analysis of diffusionweighted magnetic resonance imaging scans of head and neck cancer patients for providing early detection of therapeutic efficacy,” Translational oncology, vol. 2, no. 3, pp. 184-190, 2009.

[4] C. Galba´n, B. Hoff, T. Chenevert, and B. Ross, “Diffusion mri in early cancer therapeutic response assessment,” NMR in Biomedicine, 2016. [OpenAIRE]

[5] C. Grady, “The cognitive neuroscience of ageing,” Nature Reviews Neuroscience, vol. 13, no. 7, pp. 491-505, 2012.

[6] C. Grady, S. Sarraf, C. Saverino, and K. Campbell, “Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks,” Neurobiology of aging, vol. 41, pp. 159-172, 2016. [OpenAIRE]

[7] D. A. Hamstra, A. Rehemtulla, and B. D. Ross, “Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology,” Journal of clinical oncology, vol. 25, no. 26, pp. 4104-4109, 2007.

[8] C. S. Kidwell, J. L. Saver, J. Mattiello, S. Starkman, F. Vinuela, G. Duckwiler, Y. P. Gobin, R. Jahan, P. Vespa, M. Kalafut, et al., “Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging,” Annals of neurology, vol. 47, no. 4, pp. 462-469, 2000.

[9] S. Lehe´ricy, M. Marjanska, L. Mesrob, M. Sarazin, and S. Kinkingnehun, “Magnetic resonance imaging of alzheimer's disease,” European radiology, vol. 17, no. 2, pp. 347-362, 2007.

[10] X. Li, R. G. Abramson, L. R. Arlinghaus, H. Kang, A. B. Chakravarthy, V. G. Abramson, J. Farley, I. A. Mayer, M. C. Kelley, I. M. Meszoely, et al., “Multiparametric magnetic resonance imaging for predicting pathological response after the first cycle of neoadjuvant chemotherapy in breast cancer.,” Investigative radiology, vol. 50, no. 4, pp. 195-204, 2015.

[11] R. Luypaert, S. Boujraf, S. Sourbron, and M. Osteaux, “Diffusion and perfusion mri: basic physics,” European journal of radiology, vol. 38, no. 1, pp. 19-27, 2001.

[12] L. Minati, M. Grisoli, and M. Bruzzone, “Mr spectroscopy, functional mri, and diffusion-tensor imaging in the aging brain: a conceptual review,” Journal of geriatric psychiatry and neurology, vol. 20, no. 1, pp. 3-21, 2007. [OpenAIRE]

[13] B. A. Moffat, T. L. Chenevert, T. S. Lawrence, C. R. Meyer, T. D. Johnson, Q. Dong, C. Tsien, S. Mukherji, D. J. Quint, S. S. Gebarski, et al., “Functional diffusion map: a noninvasive mri biomarker for early stratification of clinical brain tumor response,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 15, pp. 5524-5529, 2005.

[14] S. Sarraf and G. Tofighi, “Deep learning-based pipeline to recognize alzheimer' s disease using fmri data,” bioRxiv, p. 066910, 2016. [OpenAIRE]

[15] S. Sarraf, G. Tofighi, et al., “Deepad: Alzheimer' s disease classification via deep convolutional neural networks using mri and fmri,” bioRxiv, p. 070441, 2016.

[16] S. Sarraf and J. Sun, “Functional brain imaging: A comprehensive survey,” arXiv preprint arXiv:1602.02225, 2016. [OpenAIRE]

23 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue