Constructing elliptic curves from Galois representations

Preprint English OPEN
Snowden, Andrew; Tsimerman, Jacob;
  • Related identifiers: doi: 10.1112/S0010437X18007315
  • Subject: Mathematics - Algebraic Geometry | Mathematics - Number Theory
    arxiv: Mathematics::K-Theory and Homology | Mathematics::Algebraic Geometry | Mathematics::Number Theory | Mathematics::Category Theory

Given a non-isotrivial elliptic curve over an arithmetic surface, one obtains a lisse $\ell$-adic sheaf of rank two over the surface. This lisse sheaf has a number of straightforward properties: cyclotomic determinant, finite ramification, rational traces of Frobenius, ... View more
  • References (11)
    11 references, page 1 of 2

    [1] S. Bosch, W. Lu¨tkebohmert, M. Raynaud. N´eron models. Springer-Verlag, Berlin, 1990.

    [2] P. Clark. Rational points on Atkin-Lehner quotients of Shimura curves.

    [3] V.G. Drinfed. Two-dimensional ℓ-adic representations of the fundamental group of a curve over a finite field and automorphic forms on GL(2). Amer. J. of Math. 105, No. 1 (1983), pp. 85-114

    [4] V.G. Drinfeld. Elliptic Modules. II. Math. USSR Sbornik, 31 No .2 (1977).

    [5] V.G. Drinfeld. Langland's conjecture for GL(2) over function fields. Proc. ICM (1978).

    [6] G. Faltings, G. Wu¨stholz, F. Grunewald, N. Schappacher, U. Stuhler. Rational points. Third edition. Papers from the seminar held at the Max-Planck-Institut fu¨r Mathematik, Bonn/Wuppertal, 1983/1984. With an appendix by Wu¨stholz. Aspects of Mathematics, E6. Friedr. Vieweg & Sohn, Braunschweig, 1992

    [7] J.S. Milne. Abelian varieties.

    [8] J.-P. Serre. Zeta and L functions, in Arithmetical Algebraic Geometry, Harper and Row, New York, 1965, 82-92.

    [9] SGA1: Revˆetements tales et groupe fondamental. S´eminaire de g´eom´etrie alg´ebrique du Bois Marie 1960-61.

    [10] G. Shimura. Algebraic number fields and symplectic discontinuous groups. Ann. of Math. (2) 86 (1967), 503-592.

  • Metrics
    No metrics available
Share - Bookmark