Killing Horizons as Equipotential Hypersurfaces

Preprint English OPEN
Smolić, Ivica;
(2012)

In this note we present a new proof that Killing horizons are equipotential hypersurfaces for the electric and the magnetic scalar potential, that makes no use of gravitational field equations or the assumption about the existence of bifurcation surface.
  • References (13)
    13 references, page 1 of 2

    [1] M. Heusler. Black hole uniqueness theorems. Cambridge University Press, Cambridge New York, 1996.

    [2] B. Carter. Black hole equilibrium states. In Black Holes. Gordon and Breach, New York, 1973.

    [3] B. Carter. The general theory of the mechanical, electromagnetic and thermodynamic properties of black holes. In General relativity: an Einstein centenary survey. CUP, Cambridge, 1989.

    [4] M. Heusler. Stationary black holes: Uniqueness and beyond. Living Rev.Rel., 1:6, 1998.

    [5] V. P. Frolov and I. D. Novikov. Black hole physics : basic concepts and new developments. Kluwer, Dordrecht Boston, 1998.

    [6] S. Gao and R. M. Wald. The 'Physical process' version of the first law and the generalized second law for charged and rotating black holes. Phys.Rev., D64:084020, 2001.

    [7] I. Ra´cz and R. M. Wald. Extension of space-times with Killing horizon. Class.Quant.Grav., 9:2643-2656, 1992.

    [8] I. Ra´cz and R. M. Wald. Global extensions of space-times describing asymptotic final states of black holes. Class.Quant.Grav., 13:539-553, 1996.

    [9] B. S. Kay and R. M. Wald. Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Space-Times with a Bifurcate Killing Horizon. Phys.Rept., 207:49-136, 1991.

    [10] S. Gao. The First law of black hole mechanics in Einstein-Maxwell and Einstein-Yang-Mills theories. Phys.Rev., D68:044016, 2003.

  • Metrics
Share - Bookmark