publication . Preprint . Article . Other literature type . 2012

Killing horizons as equipotential hypersurfaces

Smolić, Ivica;
Open Access English
  • Published: 10 Sep 2012
Comment: 8 pages; revised, published version; several assumptions removed from the final theorem
arXiv: Mathematics::Differential Geometry
free text keywords: General Relativity and Quantum Cosmology, Physics and Astronomy (miscellaneous)
Funded by
MZOS| Elementary particles, field theory and cosmology
  • Funder: Ministry of Science, Education and Sports of the Republic of Croatia (MSES) (MZOS)
  • Project Code: 119-0982930-1016

[1] M. Heusler. Black hole uniqueness theorems. Cambridge University Press, Cambridge New York, 1996. [OpenAIRE]

[2] B. Carter. Black hole equilibrium states. In Black Holes. Gordon and Breach, New York, 1973.

[3] B. Carter. The general theory of the mechanical, electromagnetic and thermodynamic properties of black holes. In General relativity: an Einstein centenary survey. CUP, Cambridge, 1989.

[4] M. Heusler. Stationary black holes: Uniqueness and beyond. Living Rev.Rel., 1:6, 1998.

[5] V. P. Frolov and I. D. Novikov. Black hole physics : basic concepts and new developments. Kluwer, Dordrecht Boston, 1998.

[6] S. Gao and R. M. Wald. The 'Physical process' version of the first law and the generalized second law for charged and rotating black holes. Phys.Rev., D64:084020, 2001.

[7] I. Ra´cz and R. M. Wald. Extension of space-times with Killing horizon. Class.Quant.Grav., 9:2643-2656, 1992.

[8] I. Ra´cz and R. M. Wald. Global extensions of space-times describing asymptotic final states of black holes. Class.Quant.Grav., 13:539-553, 1996.

[9] B. S. Kay and R. M. Wald. Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Space-Times with a Bifurcate Killing Horizon. Phys.Rept., 207:49-136, 1991.

[10] S. Gao. The First law of black hole mechanics in Einstein-Maxwell and Einstein-Yang-Mills theories. Phys.Rev., D68:044016, 2003.

[11] C. W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. Freeman & Co., San Francisco, 1970.

[12] K. S. Thorne, R. H. Price, and D. A. Macdonald. Black holes: the membrane paradigm. Yale University Press, New Haven, 1986.

[13] M. Nakahara. Geometry, topology, and physics. IOP Publishing, Bristol, 2nd edition, 2005.

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue