## Application of multivariate splines to discrete mathematics

*Xu, Zhiqiang*;

- Subject: Mathematics - Combinatorics | Mathematics - Functional Analysis | 05A15 | Mathematics - Numerical Analysis

- References (31)
1. M. Beck and D. Pixton, The Ehrhart polynomial of the Birkhoff polytope, Discrete Comp. Geom., 30 (2003) 623-637.

2. M. Beck, R. Diaz and S. Robins, The Frobenius problem, rational polytopes, and Fourier-Dedekind sums, J. Number Theory, 96(2002) 1-21.

3. M. Beck and S. Robins, Computing the continuous discretely: integer-point enumeration in polyhedra, Springer, New York, 2007.

4. B. Bueler, A. Enge and K. Fukuda, Exact volume computation for polytopes: A practical study. In: Polytopes-Combinatorics and Computation, G. Kalai, and G.M. Ziegler, Eds., BirkhÂ¨auser Verlag, Basel, 2000.

5. M. Brion and M. Vergne, Residue formulae, vector partition functions and lattice points in rational polytopes, J. Amer. Math. Soc. 10(1997) 797-833.

6. S. E. Cappell and J. L. Shaneson, Genera of algebraic varieties and counting of lattice points, Bull. Amer. Math. Soc., 30 (1994) 62-69.

7. C. S. Chan and D. P. Robbins, On the volume of the polytope of doubly stochastic matrices. Experiment. Math., 8 (1999) 291-300.

8. W. Dahmen, On multivariate B-splines, SIAM J. Numer. Anal., 17 (1980) 179-191.

9. W. Dahmen and C. A. Micchelli, Translates of multivariate splines, Linear Algebra Appl., 52/53 (1983) 217-234.

10. W. Dahmen and C. A. Micchelli, Recent progress in multivariate splines, in Approximation Theory IV (C. K. Chui, L.L. Schumaker, and J. Ward, Eds.), Academic Press, New York, 1983, 27-121.

- Metrics No metrics available

- Download from

- Cite this publication