Density nonlinearities and a field theory for the dynamics of simple fluids

Preprint English OPEN
Mazenko, Gene F.; Yeo, Joonhyun;
(1994)

We study the role of the Jacobian arising from a constraint enforcing the nonlinear relation: ${\bf g}=\rho{\bf V}$, where $\rho,\: {\bf g}$ and ${\bf V}$ are the mass density, the momentum density and the local velocity field, respectively, in the field theoretic formu... View more
  • References (10)

    [1] B. Kim and G. F. Mazenko, J. Stat. Phys. 64, 631 (1991).

    [2] D. N. Zubarev and V. G. Morozov, Physica A 120, 411 (1983); V. G. Morozov, Physica A, 126, 443 (1984).

    [3] S. P. Das and G. F. Mazenko, Phys. Rev. A 34, 2265 (1986)

    [4] P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev. A 8, 423 (1973).

    [5] U. Deker and F. Haake, Phys. Rev. A 11, 2043 (1975); 12, 1629 (1975). R. Bausch, H. J. Janssen, and H. Wagner, Z. Phys. B 24, 113 (1976); U. Deker, Phys. Rev. A 19, 846 (1979); C. De Dominicis and L. Peliti, Phys. Rev. B 18, 353 (1978); R. V. Jensen, J. Stat. Phys. 25, 183 (1981).

    [6] E. Leutheusser, Phys. Rev. A 29, 2765 (1984).

    [7] For a recent review of theoretical development, see W. Go¨tze in Liquids, Freezing and the Glass Transition, edited by D. Levesque, J. P. Hansen and J. Zinn-Justin (New York, Elsevier 1991); B. Kim and G. F. Mazenko, Phys. Rev. A 45, 2393 (1992).

    [8] R. Schmitz, J. W. Dufty, and P. De, Broken Ergodicity and the Glass Transition, preprint

    [9] F. A. Berezin, The Method of Second Quantization (Academic Press, New York 1966). G. Mun˜oz and W. S. Burgett, J. Stat. Phys. 56, 59 (1989); S. Chaturvedi, A. K. Kapoor and V. Srinivasan, Z. Phys. B 57, 249 (1984).

    [10] S.-k. Ma and G. F. Mazenko, Phys. Rev. B 11, 4077 (1975). [12] G. F. Mazenko, S. Ramaswamy, and J. Toner, Phys. Rev. Lett. 49, 51 (1982); Phys. Rev. A 28, 1618 (1983).

  • Metrics
    No metrics available
Share - Bookmark