publication . Preprint . 2014

Global existence and blow-up phenomena for two-component Degasperis-Procesi system and two-component b-family system

Liu, Jingjing; Yin, Zhaoyang;
Open Access English
  • Published: 14 Jan 2014
Abstract
Comment: This paper has been withdrawn by the author due to a crucial error
Subjects
free text keywords: Mathematics - Analysis of PDEs
Related Organizations
Download from
34 references, page 1 of 3

[1] R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. [OpenAIRE]

[2] G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation, J. Func. Anal., 233 (2006), 60-91 . [OpenAIRE]

[3] A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.

[4] A. Constantin and J. Escher, Particles trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.

[5] A. Constantin and R. Ivanov, On an integrable two-component Camass-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.

[6] A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and DegasperisProcesi equations, Arch. Rat. Mech. Anal., 192 (2009), 165-186.

[7] A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.

[8] A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear Sci., 12 (2002), 415-422.

[9] A. Degasperis, D. D. Holm and A. N. W. Hone, A new integral equation with peakon solutions, Theo. Math. Phys., 133 (2002), 1463-1474.

[10] H. R. Dullin, G. A. Gottwald and D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett., 87 (2001), 4501-4504. [OpenAIRE]

[11] H. R. Dullin, G. A. Gottwald and D. D. Holm, Camassa-Holm, Korteweg -de Veris-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dynam. Res., 33 (2003), 73-79.

[12] H. R. Dullin, G. A. Gottwald and D. D. Holm, On asymptotically equivalent shallow water wave equations, Phys. D, 190 (2004), 1-14.

[13] A. Degasperis and M. Procesi, Asymptotic integrability, Symmetry and Perurbation Theory, Rome, 1998, World Sci. Publishing, River Edge, NJ, 1999, pp. 23-37.

[14] J. Escher, M. Kohlmanna and J. Lenells, The geometry of the two-component Camassa-Holm and Degasperis-Procesi equations, J. Geom. Phys., 61 (2011), 436-452.

[15] J. Escher, Y. Liu and Z. Yin, Global weak solutions and blow-up structure for the DegasperisProcesi equation, J. Func. Anal., 241 (2006), 457-485.

34 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue