Neutron Scattering and Its Application to Strongly Correlated Systems

Preprint English OPEN
Zaliznyak, Igor A. ; Tranquada, John M. (2013)
  • Related identifiers: doi: 10.1007/978-3-662-44133-6_7
  • Subject: Condensed Matter - Strongly Correlated Electrons
    arxiv: Condensed Matter::Strongly Correlated Electrons

Neutron scattering is a powerful probe of strongly correlated systems. It can directly detect common phenomena such as magnetic order, and can be used to determine the coupling between magnetic moments through measurements of the spin-wave dispersions. In the absence of magnetic order, one can detect diffuse scattering and dynamic correlations. Neutrons are also sensitive to the arrangement of atoms in a solid (crystal structure) and lattice dynamics (phonons). In this chapter, we provide an introduction to neutrons and neutron sources. The neutron scattering cross section is described and formulas are given for nuclear diffraction, phonon scattering, magnetic diffraction, and magnon scattering. As an experimental example, we describe measurements of antiferromagnetic order, spin dynamics, and their evolution in the La(2-x)Ba(x)CuO(4) family of high-temperature superconductors.
  • References (74)
    74 references, page 1 of 8

    1. Bednorz, J. G. & Mu¨ller, K. A. Possible high Tc superconductivity in the Ba-La64, 189-193 (1986).

    2. Anderson, P. W. New approach to the theory of superexchange interactions. (1959).

    3. Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature sup 288, 468-474 (2000).

    4. Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperatur Mod. Phys. 75, 1201-1241 (2003).

    5. Carlson, E. W., Emery, V. J., Kivelson, S. A. & Orgad, D. Concepts in high t superconductivity. In The Physics of Superconductors Vol. II: Superconductivi High-Tc and Novel Superconductors, Organic Superconductors (eds Bennema J. B.) (Springer, Berlin, in the press); preprint at k

    6. Bourges, P. et al. The spin excitation spectrum in superconducting YBa2Cu3 1234-1237 (2000).

    7. Kaneshita, E., Ichioka, M. & Machida, K. Spin and charge excitations in inco waves. J. Phys. Soc. Jpn 70, 866-876 (2001).

    Fig. 1.8. (a)FigQur-ein4tEexgperraimteendtalsrpeseucltstrfoarlinwtegeriagtehdtmagnetic(bsc)ateterinegcatnivdedismpearsgionneotfithce disp8.erBastiisotan,C.iDn., Ortiz, G. & Balatsky, A. V. Unified description of the resonan and

    the stripe-ordexecriteatdions. a, S(q), as defined in the text. Circles denote the 1E =i¼8,8f0rmoemV data set;The solinidcomlminenesusration in high-Tc superconductors. Phys. Rev. B 64, 172508 (20 phase of La2 xBaxCuO4 with x = [60].

    through the smdqaaugatnraeestipcdseocniaontttetersEiniga¼rfreo2m4d0oetmhseecrVrs;iidgbinaeamldso,ncidansredtwehnaoestetatkEeeixn¼tto.5a0Ivn0oimd(seatVr).on,Ingtdchiosnetitnrgipbuueistaihoiknnsgfarthotme 49.0 eHmxacyitdeaetVnio,nSs.iMisn.a,Mhiogohk-,trHan.sAit.,ioDna-it,ePm.,pPeerrartiunrge, sTu.pGe.r&coDndoug˘catno,rF..NTahteursetr4u2c9tu,r5e now know topbhoenon branches at 20 and 47 meV. To obtain only the spin-dependendtibsephaevriosuiro,wneis p1l0o. tRtezenidk, Dfo.ertal. Dispersion of magnetic excitations in superconducting opti due to a phonon mode. In (b), the e ective

  • Metrics
    No metrics available
Share - Bookmark