A DataDriven SparseLearning Approach to Model Reduction in Chemical Reaction Networks

Subject: Mathematics  Optimization and Control  Mathematics  Dynamical Systems  Computer Science  Learning

References
(12)
12 references, page 1 of 2
 1
 2
[1] Feinberg, M., (1987) Chemical reaction network structure and the stability of complex isothermal reactorsI: The deficiency zero and deficiency one theorems. Chemical Engineering Science 42, pp. 22292268.
[2] Strehlow, R.A., (1984) Combustion fundamentals, McGrawHill College.
[3] Tomlin, A.S. & Turanyi, T. & Pilling, M.J., (1997) Mathematical Tools for the Construction, Investigation and Reduction of Combustion Mechanisms. Elsevier Comprehensive Chemical Kinetics, pp. 293437.
[4] Lu, T. & Law, C.K., (2005) A directed relation graph method for mechanism reduction. Elsevier Proceedings of the Combustion Institute 30, pp. 13331341.
[5] Lu, T. & Law, C.K., (2006) On the applicability of directed relation graphs to the reduction of reaction mechanisms. Elsevier Combustion and Flame 146, pp. 472483.
[6] Tomlin, A.S. & Pilling, M.J. & Turanyi, T. & Merkin, J.H. & Brindley, J., (1992). Mechanism Elsevier Combustion and Flame 91, pp. 107130.
[7] PepiotDesjardins, P. & Pitsch, H., (2008) An efficient errorpropagationbased reduction method for large chemical kinetic mechanisms. Elsevier Combustion and Flame 154, pp. 6781.
[8] Candes, E.J. & Wakin, M.B., (2010). An Introduction To Compressive Sampling. IEEE Signal Processing Magazine, pp. 2130.
[9] Inc. Gurobi Optimization, (2015) Gurobi optimizer reference manual.
[10] Joshi, S. & Boyd, S., (2009) Sensor selection via convex optimization. IEEE Transactions on Signal Processing 57. pp. 451462.

Metrics
No metrics available

 Download from


Cite this publication