A connection between the Uncertainty Principles on the real line and on the circle

Preprint English OPEN
Andersen, Nils Byrial (2013)
  • Subject: Mathematics - Functional Analysis

The purpose of this short note is to exhibit a new connection between the Heisenberg Uncertainty Principle on the line and the Breitenberger Uncertainty Principle on the circle, by considering the commutator of the multiplication and difference operators on Bernstein functions
  • References (11)
    11 references, page 1 of 2

    [1] E. Breitenberger, Uncertainty measures and uncertainty relations for angle observables, Found. Phys. 15 (1983), 353-364.

    [2] W. Erb, Uncertainty principles on Riemannian manifolds, Dissertation, Logos Verlag, Berlin (2011).

    [3] G.B. Folland, A. Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl. 3 (1997), 207-233.

    [4] T.N.T. Goodman, S.S. Goh, Uncertainty principles and optimality on circles and spheres, Advances in constructive approximation: Vanderbilt 2003, 207218, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2004.

    [5] S.S. Goh, T.N.T. Goodman, Uncertainty principles and asymptotic behavior, Appl. Comput. Harmon. Anal. 16 (2004), 19-43.

    [6] S.S. Goh, C.A. Micchelli, Uncertainty principles in Hilbert spaces, J. Fourier Anal. Appl. 8 (2002), 335-373.

    [7] W. Heisenberg, U¨ ber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. f. Physik. 43 (1927), 172-198.

    [8] B.Ya. Levin, Lectures on entire functions, Translations of Mathematical Monographs, Vol. 150, Amer. Math. Soc., Providence, RI.

    [9] J. Prestin, E. Quak, Optimal functions for a periodic uncertainty principle and multiresolution analysis, Proc. Edinburgh Math. Soc. (2) 42 (1999), 225-242.

    [10] J. Prestin, E. Quak, H. Rauhut, K. Selig, On the connection of uncertainty principles for functions on the circle and on the real line, J. Fourier Anal. Appl. 9 (2003), 387-409.

  • Metrics
    No metrics available
Share - Bookmark