[1] S. Akiyama, S. Egami and Y. Tanigawa, Analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith, 98 (2001), 107-116. [OpenAIRE]
[2] S. Akiyama and H. Ishikawa, On analytic continuation of multiple Lfunctions, Analytic Number Theory, C. Jia and K. Matsumoto, eds. (2002), 1-16.
[3] E. D. Cashwell and C. J. Everett, The ring of number-theoretic functions, Pacific J. Math. 9 (1959), 975-985. [OpenAIRE]
[4] R. de la Bret´eche, Estimation de sommes multiples de fonctions arith´etiques, Compositio Mathematica 128 (2001), 261-298.
[5] M. Hoffman, Multiple harmonic series, Pacific J. Math., 152 (1992), 275-290.
[6] K. Matsumoto, On analytic continuation of various multiple zetafunctions, Number Theory for the Millenium (Urbana, 2000), Vol. II, M. A. Bennett et. al. (eds.), A. K. Peters, Natick, MA, 2002, pp. 417- 440.
[7] K. Matsumoto, On Mordell-Tornheim and other multiple zeta-functions, In: Proc. Session in Analytic Number Theory and Diophantine Equations, (eds. D. R. Heath-Brown and B. Z. Moroz), Bonner Math. Schriften, 360, Bonn, 2003, n.25, 17pp.
[8] K. Matsumoto and Y. Tanigawa, The analytic continuation and the order estimate of multiple Dirichlet series, J. Th´eorie des Nombres de Bordeaux, 15 (2003), 267-274.
[9] R. Spira, Zero-free regions of ζ(k)(s), J. London Math. Soc., 40 (1965), 677-682.
[10] L. T´oth, Multiplicative arithmetic functions of several variables: a survey, preprint, arXiv:1310.7053.
[11] J. Zhao, Analytic continuation of multiple zeta functions, Proc. Amer. Math. Soc. 128 (2000), 1275-1283.