publication . Preprint . 2000

The moduli space of two U(1) instantons on noncommutative $R^4$ and $R^3\times S^1$

Lee, Kimyeong; Tong, David; Yi, Sangheon;
Open Access English
  • Published: 11 Aug 2000
Abstract
We employ the ADHM method to derive the moduli space of two instantons in U(1) gauge theory on a noncommutative space. We show by an explicit hyperK\"ahler quotient construction that the relative metric of the moduli space of two instantons on $R^4$ is the Eguchi-Hanson metric and find a unique threshold bound state. For two instantons on $R^3\times S^1$, otherwise known as calorons, we give the asymptotic metric and conjecture a completion. We further discuss the relationship of caloron moduli spaces of A, D and E groups to the Coulomb branches of three dimensional gauge theory. In particular, we show that the Coulomb branch of SU(2) gauge group with a single m...
Persistent Identifiers
Subjects
arXiv: High Energy Physics::LatticeHigh Energy Physics::Theory
free text keywords: High Energy Physics - Theory
Download from
32 references, page 1 of 3

[1] A. Connes, M. Douglas, and A. Schwarz, JHEP 9802 (1998) 003.

[2] N. Seiberg and E. Witten, JHEP 9909 (1999) 032.

[3] N. Nekrasov and A. Schwarz, Comm. Math. Phys. 198 (1998) 689.

[4] K. Hasimoto, H. Hata and S. Moriyama, JHEP 9912 (1999) 021; D. Bak, Phys. Lett. B471 (1999) 149.

[5] D. Gross and N. Nekrasov, Monopoles and strings in noncommutative gauge theory, hepth/0005204; Dynamics of Strings in noncommutative gauge theory, hep-th/0007204.

[6] D. Jaktar, G. Mandal and S. Wadia, Nielsen-Olesen vortices in noncommutative abelian higgs model, hep-th/0007078.

[7] R. Gopakumar, S. Minwalla, and A. Strominger, JHEP 0005 (2000) 020 [OpenAIRE]

[8] B.H. Lee, K. Lee, and H.S. Yang, The CP(n) model on noncommutative plane, hep-th/0007140.

[9] K. Lee and P. Yi, Phys. Rev. D61 (2000) 125015.

[10] K. Lee and P. Yi, Phys. Rev. D56 (1997) 3711; T.C. Kraan and P. van Baal, Phys. Lett. B428 (1998) 268; Nucl. Phys. B533 (1998) 627.

[11] O. Ganor and J. Karczmarek, M(atrix)-theory scattering in the noncommutative (2,0) theory, hep-th/0007166

[12] K. Lee and C. Lu, Phys. Rev. D57 (1998) 5260.

[13] A. Kapustin and S. Sethi, Adv. Theor. Math. Phys. 2 (1998) 571.

[14] M. Atiyah, N. Hitchin, V. Drinfeld and Y, Manin, Phys. Lett. 65A (1978) 185.

[15] H. Nakajima, Resolution of moduli spaces of ideal instantons on R4, in Topology, geometry, and field theory (World scientific, 1994)

32 references, page 1 of 3
Any information missing or wrong?Report an Issue