Convex Hypersurfaces and $L^p$ Estimates for Schr\"odinger Equations

Preprint English OPEN
Zheng, Quan; Yao, Xiaohua; Fan, Da;
(2004)
  • Subject: 42B10 | Mathematics - Classical Analysis and ODEs | Mathematics - Analysis of PDEs | 35J10

This paper is concerned with Schr\"odinger equations whose principal operators are homogeneous elliptic. When the corresponding level hypersurface is convex, we show the $L^p$-$L^q$ estimate of solution operator in free case. This estimate, combining with the results of... View more
  • References (15)
    15 references, page 1 of 2

    [4] M. Balabane and H. A. Emami-Rad, Lp estimates for Schr¨odinger evolution equations, Trans. Amer. Math. Soc. 292 (1985) 357-373.

    [5] J. Bruna, A. Nagel, and S. Wainger, Convex hypersurfaces and Fourier transforms, Ann. Math. 127 (1988), 333-365.

    [6] M. Cowling, S. Disney, G. Maucceri, and D. Mu¨ller, Damping oscillatory integrals, Invent. Math. 101 (1990) 237-260.

    [7] G. Da Prato, Semigruppi regolarizzabili, Ricerche Mat. 15 (1966) 223-248.

    [8] E. B. Davies and M. M. H. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc. 55 (1987) 181-208.

    [9] M. Hieber, Integrated semigroups and differential operators on Lp, Dissertation, Tu¨bingen, 1989.

    [10] L. H¨ormander, Estimates for translation invariant operators in Lp spaces, Acta Math. 104 (1960) 93-140.

    [11] A. Miyachi, On some estimates for the wave equation in Lp and Hp, J. Fac. Sci. Univ. Tokyo 27 (1980) 331-354.

    [12] A. Miyachi, On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo 28 (1981) 267-315.

    [13] J. van Neerven and B. Straub, On the existence and growth of mild solutions of the abstract Cauchy problem for operators with polynomially bounded resolvent, Houston J. Math. 24 (1998) 137-171.

  • Metrics
    No metrics available
Share - Bookmark