publication . Preprint . 2016

Formal Series of Generalised Functions and Their Application to Deformation Quantisation

Tosiek, Jaromir; Dobrski, Michał;
Open Access English
  • Published: 22 Sep 2016
Abstract
Foundations of the formal series $*$ -- calculus in deformation quantisation are discussed. Several classes of continuous linear functionals over algebras applied in classical and quantum physics are introduced. The notion of nonnegativity in formal series calculus is proposed. Problems with defining quantum states over the set of formal series are analysed.
Subjects
free text keywords: Quantum Physics, Mathematical Physics, 81P16
Download from
17 references, page 1 of 2

[1] H. Weyl, The theory of groups and quantum mechanics, Methuen, London 1931 (reprinted Dover, New York 1950).

[2] E. P. Wigner, Phys. Rev. 40, 749 (1932).

[3] H. J. Groenewold, Physica 12, 405 (1946).

[4] J. E. Moyal, Proc. Camb. Phil. Soc. 45, 99 (1949).

[5] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Lett. Math. Phys. 1, 521 (1977).

[6] F. Bayen, M.Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Ann. Phys. NY 111, 61 (1978); Ann. Phys. NY 111, 111 (1978).

[7] L. Schwartz, M´ethodes math´ematiques pour les sciences physiques, Hermann, Paris 1965.

[8] B. Fedosov, J. Diff. Geom. 40, 213 (1994).

[9] B. Fedosov, Deformation quantization and index theory, Akademie Verlag, Berlin 1996.

[10] M. Kontsevich, Lett. Math. Phys. 66, 157 (2003).

[11] R. Nest and B. Tsygan, Comm. Mah. Phys. 172, 223 (1995).

[12] S. Gutt and J. Rawnsley, J. Geom. Phys. 42, 12 (2002).

[13] I. Bengtsson and K. Z˙yczkowski, Geometry of Quantum States, Cambridge University Press, New York 2006.

[14] J. F. Pleban´ski, Quantum mechanics in the Moyal representation, unpublished notes.

[15] J. F. Pleban´ski, M. Przanowski and J. Tosiek, Acta Phys. Pol. B 27, 1961 (1996).

17 references, page 1 of 2
Any information missing or wrong?Report an Issue