On the problem of quantum control in infinite dimensions

Preprint English OPEN
Mendes, R. Vilela; Man'ko, Vladimir I.;
(2010)

In the framework of bilinear control of the Schr\"odinger equation with bounded control operators, it has been proved that the reachable set has a dense complemement in ${\cal S}\cap {\cal H}^{2}$. Hence, in this setting, exact quantum control in infinite dimensions is ... View more
  • References (24)
    24 references, page 1 of 3

    [1] G. M. Huang, T. J. Tarn and J. W. Clark; On the controllability of quantum-mechanical systems, J. Math. Phys. 24 (1983) 2608-2618.

    [2] V. Ramakrishna, M. Salapaka, M. Dahleh, H. Rabitz and A. Peirce; Controllability of molecular systems, Phys. Rev. A51 (1995) 960-966.

    [3] S. G. Schirmer, H. Fu and A. I. Solomon; Complete controllability of quantum systems, Phys. Rev.A 63 (2001) 063410.

    [4] C. Altafini; Controllability of quantum mechanical systems by root space decomposition of SU (n), J. Math. Phys. 43 (2002) 2051-2062.

    [5] G. Turinici and H. Rabitz; Wavefunction controllability in quantum systems, J. Phys. A36 (2003) 2565-2576.

    [6] F. Albertini and D. D'Alessandro; Notions of controllability for bilinear multilevel quantum systems, IEEE Trans. on Automatic Control 48 (2003) 1399-1403.

    [7] R. Illner, H. Lange and H. Teismann; Limitations on the control of Schr¨odinger equations, ESAIM: Control, Optimisation and Calculus of Variations 12 (2006) 615-635.

    [8] R.-B. Wu, T.-J. Tarn and C.-W. Li; Smooth controllability of infinitedimensional quantum mechanical systems, Phys. Rev. A 73 (2006) 012719.

    [9] G. Turinici; Analyse de m´ethodes num´eriques de simulation et contrˆole en chimie quantique, p. 106, Ph. D. Thesis, Univ. Pierre et Marie Curie, Paris 2000.

    [10] J. M. Ball, J. E. Marsden and M. Slemrod; Controllability for distributed bilinear systems, SIAM J. Control and Optimization 20 (1982) 575-597.

  • Metrics
    No metrics available
Share - Bookmark