On the computation of lambdacontractive sets for linear constrained systems

Subject: Mathematics  Optimization and Controlacm: TheoryofComputation_LOGICSANDMEANINGSOFPROGRAMS

References
(9)
[1] F. Blanchini and S. Miani, SetTheoretic Methods in Control. Birkh¨auser, 2008.
[2] F. Blanchini, “Ultimate boundedness control for uncertain discretetime systems via setinduced Lyapunov functions,” IEEE Trans. Autom. Control, vol. 39, no. 2, pp. 428433, 1994.
[3] D. P. Bertsekas, “Infinitetime reachability of statespace regions by using feedback control,” IEEE Trans. Autom. Control, vol. 17, no. 5, pp. 604613, 1972.
[4] M. Cwikel and P. O. Gutman, “Convergence of an algorithm to find maximal state constraint sets for discretetime linear dynamical systems with bounded controls and states,” IEEE Trans. Autom. Control, vol. 31, no. 5, pp. 457459, 1986.
[5] P. O. Gutman and M. Cwikel, “An algorithm to find maximal state constraint sets for discretetime linear dynamical systems with bounded control and states,” IEEE Trans. Autom. Control, vol. 32, no. 3, pp. 251253, 1987.
[6] S. S. Keerthi and E. G. Gilbert, “Computation of minimumtime feedback control laws for discretetime systems with statecontrol constraints,” IEEE Trans. Autom. Control, vol. 32, no. 5, pp. 432435, 1987.
[7] F. Blanchini and S. Miani, “Constrained stabilization of continuoustime linear systems,” System and Control Letters, vol. 28, pp. 95102, 1996.
[8] M. Fiacchini, T. Alamo, and E. F. Camacho, “On the computation of local invariant sets for nonlinear systems,” in Proc. of 46th Conference on Decision and Control, pp. 39893994, 2007.
[9] M. Schulze Darup and M. M¨onnigmann, “On general relations between nullcontrollable and controlled invariant sets,” in Proc. of 53th Conference on Decision and Control, pp. 63236328, 2014.
 Similar Research Results (2)

Metrics
No metrics available

 Download from


Cite this publication