Radiation-reaction electromagnetic fields in metasurfaces, a complete description of their optical properties

Preprint English OPEN
Merano, Michele (2018)
  • Subject: Physics - Optics | Condensed Matter - Mesoscale and Nanoscale Physics | Condensed Matter - Materials Science

This paper derives the macroscopic electric and magnetic fields and the surface susceptibilities for a metasurface, starting from the microscopic scatterer distribution. It is assumed that these scatterers behave as electric and magnetic dipoles under the influence of the incident radiation. Interestingly not only the retarded electromagnetic fields from oscillating dipoles are relevant to pass from the microscopic to the macroscopic representation, but the advanced fields must be considered too. It is found that the macroscopic fields are the sum of the incident fields plus the radiation-reaction fields acting on a single scatterer. Both the local fields and the radiation-reaction fields are necessary to fix the electric and magnetic surface susceptibilities.
  • References (7)

    ∗ michele.merano@unipd.it [1] N. Yu and F. Capasso, Nat. Mater. 13, 139 (2014). [2] A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, Nat. Nanotech 10, 937 (2015). [3] A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Science 339, 1289 (2013). [4] D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Science 345, 298 (2014). [5] M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon Press, 1975) Chap. 2. [6] E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, IEEE Trans. Antennas

    Propag 51, 2641 (2003). [7] K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and A. Geim,

    PNAS 102, 10451 (2005). [8] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010). [9] M. Merano, Phys. Rev. A 93, 013832 (2016). [10] G. Jayaswal, Z. Dai, X. Zhang, M. Bagnarol, A. Martucci, and M. Merano,

    Opt. Lett. 43, 703 (2018). [11] L. Dell'Anna and M. Merano, Phys. Rev. A 93, 053808 (2016). [12] M. Merano, Annalen der Physik 529, 1700062 (2017). [13] J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley and Sons, 1998) pp. 747-750. [14] J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 17, 157 (1945). [15] P. A. M. Dirac, Proc. Roy. Soc. London A 167, 148 (1938). [16] W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd ed. (Addison-

    Wesley Publishing Company, 1962) pp. 387-389 and 394-400. [17] C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu,

    R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, NATURE 546, 265 (2017). [18] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong,

    X. Xu, NATURE 546, 270 (2017).

  • Metrics
    No metrics available
Share - Bookmark