Weinhold'length in an isentropic Ideal and quasi-Ideal Gas

Preprint English OPEN
Santoro, Manuel;

In this paper we study thermodynamic length of an isentropic Ideal and quasi-Ideal Gas using Weinhold metric in a two-dimensional state space. We give explicit relation between length at constant entropy and work.
  • References (12)
    12 references, page 1 of 2

    [1] H.B. Callen, Thermodynamics, Whiley, 1960.

    [2] L. Diosi, K. Kulacsy, B. Lukacs, A. Racz, Thermodynamic length, time, speed and optimum path to minimize entropy production, J.Chem.Phys. 105, 11220-11225, 1996.

    [3] R. Mrugala, On equivalence of two metrics in classical thermodynamics, Physica A, v.125, 631-639, 1984.

    [4] G. Ruppeiner, Thermodynamics: A Riemannian geometric model Phys. Rev. A, 20(4), 1608- 1613, 1979.

    [5] P. Salamon, R.S. Berry, Thermodynamic Length and Dissipated Availability, Phys. Rev. Lett., v.51(13), 1127-1130, 1983.

    [6] P. Salamon, J. Nulton, E. Ihrig, On the relation between entropy and energy versions of thermodynamics length, J.Chem.Phys., v.80, 436, 1984.

    [7] P. Salamon, B. Andresen, P.D. Gait, R.S. Berry, The significance of Weinhold's length J.Chem.Phys., v.73(2), 1001-1002, 1980.

    [8] P. Salamon, J.D. Nulton, R.S. Berry, Length in statistical thermodynamics J.Chem.Phys., v.82(5), 2433-2436, 1985.

    [9] M. Santoro, Thermodynamic length in a two-dimensional thermodynamic state space, J.Chem.Phys., v.121, n.7, pp.2932-2936., 2004.

    [10] M. Santoro, On the Helmholtz Potential metric: The Isotherm Length-Work Theorem, arXiv,org, math-ph/0404040.

  • Metrics
Share - Bookmark