publication . Preprint . 2017

Definably compact groups definable in real closed fields. I

Barriga, Eliana;
Open Access English
  • Published: 24 Mar 2017
Abstract
Comment: 25 pages
Subjects
free text keywords: Mathematics - Logic, 03C64, 20G20, 22E15, 03C68, 22B99
Download from
28 references, page 1 of 2

[1] Elías Baro and Mário J. Edmundo. Corrigendum to: “Locally definable groups in o-minimal structures” [J. Algebra 301 (2006), no. 1, 194-223; mr2230327] by Edmundo. J. Algebra, 320(7):3079-3080, 2008. [OpenAIRE]

[2] Elías Baro and Margarita Otero. Locally definable homotopy. Ann. Pure Appl. Logic, 161(4):488-503, 2010.

[3] Eliana Barriga. Doctoral thesis. Semialgebraic groups over real closed fields. Univ. of Haifa, Israel and Univ. de los Andes, Colombia, pages 1-96, 2017.

[4] Alessandro Berarducci. Cohomology of groups in o-minimal structures: acyclicity of the infinitesimal subgroup. J. Symbolic Logic, 74(3):891-900, 2009.

[5] Alessandro Berarducci, Mário Edmundo, and Marcello Mamino. Discrete subgroups of locally definable groups. Selecta Math. (N.S.), 19(3):719-736, 2013.

[6] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real algebraic geometry, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1998. Translated from the 1987 French original, Revised by the authors.

[7] Elisabeth Bouscaren. The group configuration-after E. Hrushovski. In The model theory of groups (Notre Dame, IN, 1985-1987), volume 11 of Notre Dame Math. Lectures, pages 199-209. Univ. Notre Dame Press, Notre Dame, IN, 1989. [OpenAIRE]

[8] Mário J. Edmundo. Locally definable groups in o-minimal structures. J. Algebra, 301(1):194-223, 2006.

[9] Mário J. Edmundo. Erratum to: “Covers of groups definable in o-minimal structures” [Illinois J. Math. 49 (2005), no. 1, 99-120]. Illinois J. Math., 51(3):1037-1038, 2007. [OpenAIRE]

[10] Mário J. Edmundo and Pantelis E. Eleftheriou. The universal covering homomorphism in o-minimal expansions of groups. MLQ Math. Log. Q., 53(6):571-582, 2007.

[11] Pantelis E. Eleftheriou and Ya'acov Peterzil. Definable quotients of locally definable groups. Selecta Math. (N.S.), 18(4):885-903, 2012. [OpenAIRE]

[12] Ehud Hrushovski, Ya'acov Peterzil, and Anand Pillay. Groups, measures, and the NIP. J. Amer. Math. Soc., 21(2):563-596, 2008.

[13] Ehud Hrushovski, Ya'acov Peterzil, and Anand Pillay. On central extensions and definably compact groups in o-minimal structures. J. Algebra, 327:71-106, 2011. [OpenAIRE]

[14] Ehud Hrushovski and Anand Pillay. Groups definable in local fields and pseudo-finite fields. Israel J. Math., 85(1-3):203-262, 1994. [OpenAIRE]

[15] Ehud Hrushovski and Anand Pillay. Affine Nash groups over real closed fields. Confluentes Math., 3(4):577-585, 2011.

28 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue