Definably compact groups definable in real closed fields. I

Preprint English OPEN
Barriga, Eliana;
(2017)
  • Subject: 03C64, 20G20, 22E15, 03C68, 22B99 | Mathematics - Logic

We study definably compact definably connected groups definable in a sufficiently saturated real closed field $R$. We introduce the notion of group-generic point for $\bigvee$-definable groups and show the existence of group-generic points for definably compact groups d... View more
  • References (28)
    28 references, page 1 of 3

    [1] Elías Baro and Mário J. Edmundo. Corrigendum to: “Locally definable groups in o-minimal structures” [J. Algebra 301 (2006), no. 1, 194-223; mr2230327] by Edmundo. J. Algebra, 320(7):3079-3080, 2008.

    [2] Elías Baro and Margarita Otero. Locally definable homotopy. Ann. Pure Appl. Logic, 161(4):488-503, 2010.

    [3] Eliana Barriga. Doctoral thesis. Semialgebraic groups over real closed fields. Univ. of Haifa, Israel and Univ. de los Andes, Colombia, pages 1-96, 2017.

    [4] Alessandro Berarducci. Cohomology of groups in o-minimal structures: acyclicity of the infinitesimal subgroup. J. Symbolic Logic, 74(3):891-900, 2009.

    [5] Alessandro Berarducci, Mário Edmundo, and Marcello Mamino. Discrete subgroups of locally definable groups. Selecta Math. (N.S.), 19(3):719-736, 2013.

    [6] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real algebraic geometry, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1998. Translated from the 1987 French original, Revised by the authors.

    [7] Elisabeth Bouscaren. The group configuration-after E. Hrushovski. In The model theory of groups (Notre Dame, IN, 1985-1987), volume 11 of Notre Dame Math. Lectures, pages 199-209. Univ. Notre Dame Press, Notre Dame, IN, 1989.

    [8] Mário J. Edmundo. Locally definable groups in o-minimal structures. J. Algebra, 301(1):194-223, 2006.

    [9] Mário J. Edmundo. Erratum to: “Covers of groups definable in o-minimal structures” [Illinois J. Math. 49 (2005), no. 1, 99-120]. Illinois J. Math., 51(3):1037-1038, 2007.

    [10] Mário J. Edmundo and Pantelis E. Eleftheriou. The universal covering homomorphism in o-minimal expansions of groups. MLQ Math. Log. Q., 53(6):571-582, 2007.

  • Similar Research Results (2)
  • Metrics
    No metrics available
Share - Bookmark