49 references, page 1 of 4
[1] Alexandrov, A. D. “Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it.” Leningrad State University Annals [Uchenye Zapiski] Math. Ser. 6 (1939): 3-35.
[2] Artstein-Avidan, S., B. Klartag, C. Schu¨tt, and E. Werner. “Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality.” Journal of Functional Analysis 262, no. 9 (2012): 4181-204.
[3] B´ar´any, I. “Affine perimeter and limit shape.” Journal fu¨r die Reine und Angewandte Mathematik 484 (1997):71- 84.
[4] B¨or¨oczky, Jr., K. “Approximation of general smooth convex bodies.” Advances in Mathematics 153, no. 2 (2000): 325-41.
[5] Busemann, H. and W. Feller. “Kru¨mmungseigenschaften Konvexer Fla¨chen.” Acta Mathematica 66, no. 1 (1936): 1-47.
[6] Caglar, U. and E. Werner. “Divergence for s-concave and log concave functions.” Advances in Mathematics 257 (2014): 219-47.
[7] Dolzmann, G. and D. Hug. “Equality of two representations of extended affine surface area.” Archiv der Mathematik 65, no. 4 (1995): 352-56.
[8] Federer, H. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.
[9] Gruber, P. M. “Approximation of convex bodies.” In Convexity and its applications, edited by P. M. Gruber and J. M. Wills, 131-62. Basel: Birkh¨auser, 1983.
[10] Gruber, P. M. “Aspects of approximation of convex bodies.” In Handbook of convex geometry, Vol. A, B, edited by P. M. Gruber and J. M. Wills, 319-45. Amsterdam: North-Holland, 1993.
[11] Gruber, P.M. “Asymptotic estimates for best and stepwise approximation of convex bodies. IV.” Forum Mathematicum 10, no. 6 (1998): 665-86.
[12] Haberl, C. and L. Parapatits. “The Centro-Affine Hadwiger Theorem.” Journal of the American Mathematical Society 27, no. 3 (2014): 685-705.
[13] Haberl, C. and L. Parapatits. “Valuations and surface area measures.” Journal fu¨r die Reine und Angewandte Mathematik 687 (2014): 225-45. [OpenAIRE]
[14] Haberl, C. and F. E. Schuster. “General Lp affine isoperimetric inequalities.” Journal of Differential Geometry 83, no. 1 (2009): 1-26.
[15] Hug, D. “Contributions to affine surface area.” Manuscripta Mathematica 91, no. 3 (1996): 283-301.
49 references, page 1 of 4