Share  Bookmark

 Download from


 Funded by

[1] Alexandrov, A. D. “Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it.” Leningrad State University Annals [Uchenye Zapiski] Math. Ser. 6 (1939): 335.
[2] ArtsteinAvidan, S., B. Klartag, C. Schu¨tt, and E. Werner. “Functional affineisoperimetry and an inverse logarithmic Sobolev inequality.” Journal of Functional Analysis 262, no. 9 (2012): 4181204.
[3] B´ar´any, I. “Affine perimeter and limit shape.” Journal fu¨r die Reine und Angewandte Mathematik 484 (1997):71 84.
[4] B¨or¨oczky, Jr., K. “Approximation of general smooth convex bodies.” Advances in Mathematics 153, no. 2 (2000): 32541.
[5] Busemann, H. and W. Feller. “Kru¨mmungseigenschaften Konvexer Fla¨chen.” Acta Mathematica 66, no. 1 (1936): 147.
[6] Caglar, U. and E. Werner. “Divergence for sconcave and log concave functions.” Advances in Mathematics 257 (2014): 21947.
[7] Dolzmann, G. and D. Hug. “Equality of two representations of extended affine surface area.” Archiv der Mathematik 65, no. 4 (1995): 35256.
[8] Federer, H. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. SpringerVerlag New York Inc., New York, 1969.
[9] Gruber, P. M. “Approximation of convex bodies.” In Convexity and its applications, edited by P. M. Gruber and J. M. Wills, 13162. Basel: Birkh¨auser, 1983.
[10] Gruber, P. M. “Aspects of approximation of convex bodies.” In Handbook of convex geometry, Vol. A, B, edited by P. M. Gruber and J. M. Wills, 31945. Amsterdam: NorthHolland, 1993.