publication . Preprint . Article . Other literature type . 2001

Epidemic dynamics and endemic states in complex networks

Alessandro Vespignani; Romualdo Pastor-Satorras;
Open Access English
  • Published: 22 May 2001
  • Country: Spain
Abstract
We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below which the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence of infections whatever spreading rate the epidemic agents might possess. These results can help understanding computer virus epidemics...
Subjects
arXiv: Quantitative Biology::Populations and EvolutionQuantitative Biology::OtherComputer Science::Social and Information Networks
free text keywords: Condensed Matter - Statistical Mechanics, Quantitative Biology, Mathematical Physics, General Physics and Astronomy, Statistical and Nonlinear Physics, Condensed Matter Physics, :Física [Àrees temàtiques de la UPC], Epidemics, Social systems, Infection, Epidemics in complex networks, Scale-free networks, Social networks, Epidèmies, Sistemes socials, Infecció, Complex system, Bounded function, Epidemic dynamics, Mathematics, Infection prevalence, Complex network, Statistical physics, Scale-free network
34 references, page 1 of 3

The leading behavior in the r.h.s. of Eq. (19), on the other hand, depends of the particular value of γ: (i) 0 < γ < 1: In this case, one has

[1] G. Weng, U.S. Bhalla and R. Iyengar, Science 284, 92 (1999); S. Wasserman and K. Faust, Social network analysis (Cambridge University Press, Cambridge, 1994).

[2] L. A. N. Amaral, A. Scala, M. Barth´el´emy, and H. E. Stanley, Proc. Nat. Acad. Sci. 97, 11149 (2000).

[3] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvar, and A.-L. Barab´asi, Nature 407, 651 (2000).

[4] J. M. Montoya and R. V. Sol´e, preprint condmat/0011195.

[5] M. Faloutsos, P. Faloutsos, and C. Faloutsos, ACM SIGCOMM '99, Comput.Commun. Rev. 29, 251 (1999); A. Medina, I. Matt, and J. Byers, Comput. Commun. Rev. 30, 18 (2000); G. Caldarelli, R. Marchetti and L. Pietronero, Europhys. Lett. 52, 386 (2000).

[6] R. Albert, H. Jeong, and A.-L. Barab´asi, Nature 401, 130 (1999).

[7] B. H. Huberman and L. A. Adamic, Nature 401, 131 (1999).

[8] B. Bollobas, Random Graphs (Academic Press, London, 1985).

[9] P. Erd¨os and P. R´enyi, Publ. Math. Inst. Hung. Acad. Sci 5, 17 (1960).

[10] D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).

[11] M. Barth´el´emy and L. A. N. Amaral, Phys. Rev. Lett. 82, 3180 (1999); A. Barrat, preprint cond-mat/9903323.

[12] A. Barrat and M. Weigt, Eur. Phys. J. B 13, 547 (2000).

[13] D. J. Watts, Small Worlds: The dynamics of networks between order and randomness (Princeton University Press, New Jersey, 1999).

[14] A.-L. Barab´asi and R. Albert, Science 286, 509 (1999); A.-L. Barab´asi, R. Albert, and H. Jeong, Physica A 272, 173 (1999).

34 references, page 1 of 3
Any information missing or wrong?Report an Issue