Epidemic dynamics and endemic states in complex networks

Article, Preprint English OPEN
Pastor Satorras, Romualdo; Vespignani, Alessandro;
(2001)
  • Related identifiers: doi: 10.1103/PhysRevE.63.066117
  • Subject: Infection | Epidèmies | Social networks | Sistemes socials | Social systems | Quantitative Biology | Scale-free networks | Epidemics | :Física [Àrees temàtiques de la UPC] | Condensed Matter - Statistical Mechanics | Infecció | Epidemics in complex networks
    arxiv: Computer Science::Social and Information Networks | Quantitative Biology::Populations and Evolution | Quantitative Biology::Other

We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below w... View more
  • References (34)
    34 references, page 1 of 4

    The leading behavior in the r.h.s. of Eq. (19), on the other hand, depends of the particular value of γ: (i) 0 < γ < 1: In this case, one has

    [1] G. Weng, U.S. Bhalla and R. Iyengar, Science 284, 92 (1999); S. Wasserman and K. Faust, Social network analysis (Cambridge University Press, Cambridge, 1994).

    [2] L. A. N. Amaral, A. Scala, M. Barth´el´emy, and H. E. Stanley, Proc. Nat. Acad. Sci. 97, 11149 (2000).

    [3] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvar, and A.-L. Barab´asi, Nature 407, 651 (2000).

    [4] J. M. Montoya and R. V. Sol´e, preprint condmat/0011195.

    [5] M. Faloutsos, P. Faloutsos, and C. Faloutsos, ACM SIGCOMM '99, Comput.Commun. Rev. 29, 251 (1999); A. Medina, I. Matt, and J. Byers, Comput. Commun. Rev. 30, 18 (2000); G. Caldarelli, R. Marchetti and L. Pietronero, Europhys. Lett. 52, 386 (2000).

    [6] R. Albert, H. Jeong, and A.-L. Barab´asi, Nature 401, 130 (1999).

    [7] B. H. Huberman and L. A. Adamic, Nature 401, 131 (1999).

    [8] B. Bollobas, Random Graphs (Academic Press, London, 1985).

    [9] P. Erd¨os and P. R´enyi, Publ. Math. Inst. Hung. Acad. Sci 5, 17 (1960).

  • Related Organizations (3)
  • Metrics
Share - Bookmark