Theory of a Slow-Light Catastrophe

Preprint English OPEN
Leonhardt, Ulf;
(2001)

In diffraction catastrophes such as the rainbow the wave nature of light resolves ray singularities and draws delicate interference patterns. In quantum catastrophes such as the black hole the quantum nature of light resolves wave singularities and creates characteristi... View more
  • References (46)
    46 references, page 1 of 5

    1 + e2πμ 1 + e2πμ 2ω0(i∂t − ω0) Ep(+) ≈ (i∂t + ω0)(i∂t − ω0) Ep(+)

    [2] H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge University Press, Cambridge, 1992).

    [3] R. Thom, Stabilit´e structurelle et morphog´en`ese (Benjamin, Reading, 1972); English translation Structural Stability and Morphogenesis (Benjamin, Reading, 1975).

    [4] V. I. Arnol'd, Uspekhi Mat. Nauk 30, 3 (1975) [Russian Math. Surveys 30, 1 (1975)].

    [5] J. F. Nye, Natural Focusing and Fine Structure of Light (Institute of Physics, Bristol, 1999).

    [6] M. V. Berry, Rays, wavefronts and phase: a picture book of cusps, in Huygen' Principle 1690-1990: Theory and Applications edited by H. Blok, H. A. Frewerda, and H. K. Kuiken (Elsevier, Amsterdam, 1992); M. V. Berry, SPIE 3487, 1 (1998).

    [7] Ch. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, New York, 1999).

    [8] R. Brout, S. Massar, R. Parentani, and Ph. Spindel, Phys. Rep. 260, 329 (1995).

    [9] W. G. Unruh, Phys. Rev. D 14, 870 (1976).

    [10] S. M. Hawking, Nature 248, 30 (1974); Commun. Math. Phys. 43, 199 (1975).

  • Metrics
Share - Bookmark