publication . Preprint . 2010

Fractional Vector Calculus and Fractional Special Function

Li, Ming-Fan; Ren, Ji-Rong; Zhu, Tao;
Open Access English
  • Published: 17 Jan 2010
Abstract
Fractional vector calculus is discussed in the spherical coordinate framework. A variation of the Legendre equation and fractional Bessel equation are solved by series expansion and numerically. Finally, we generalize the hypergeometric functions.
Subjects
arXiv: Mathematics::Classical Analysis and ODEs
free text keywords: Mathematical Physics
Related Organizations
Download from

[1] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Application of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[3] G. M. Viswanathan, T. M. Viswanathan, arXiv:0807.1563v1 [physics.flu-dyn] 10 Jul 2008

[4] V. Gariychuk, B. Datsko, V. Meleshko, Physica A 387 (2008) 418-424

[5] V. Gariychuk, B. Datsko, Physics Letters A 372 (2008) 4902-4904

[6] Lei Song, Shiyun Xu, Jianying Yang, Commun Nonlinear Sci Numer Simulat 15 (2010) 616-628

[7] Nick Laskin, Phys. Rev. E 66, 056108 (2002)

[8] Marcelo R. Ubriaco, Physics Letters A 373 (2009) 2516- 2519

[9] Sami I. Muslih, Om P.Agrawal, Int J Theor Phys, DOI: 10.1007/s10773-009-0200-1

[10] Vasily E. Tarasov, Annals of Physics 323 (2008) 2756- 2778

[11] Zhenjun Yan, Mathematical Physics Equations, 2nd Edit., in Chinese, University of Science and Technology of China Press, Hefei, 2001.

[12] Zhuxi Wang, Dunren Guo, Introduction to Special Functions, in Chinese, Peking University Press, Beijing, 2000.

[13] http://en.wikipedia.org/wiki/Hypergeometric function

[14] http://en.wikipedia.org/wiki/Confluent hypergeometric function

Any information missing or wrong?Report an Issue