Fractional Vector Calculus and Fractional Special Function

Preprint English OPEN
Li, Ming-Fan ; Ren, Ji-Rong ; Zhu, Tao (2010)
  • Subject: Mathematical Physics
    arxiv: Mathematics::Classical Analysis and ODEs

Fractional vector calculus is discussed in the spherical coordinate framework. A variation of the Legendre equation and fractional Bessel equation are solved by series expansion and numerically. Finally, we generalize the hypergeometric functions.
  • References (14)
    14 references, page 1 of 2

    [1] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Application of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

    [3] G. M. Viswanathan, T. M. Viswanathan, arXiv:0807.1563v1 [physics.flu-dyn] 10 Jul 2008

    [4] V. Gariychuk, B. Datsko, V. Meleshko, Physica A 387 (2008) 418-424

    [5] V. Gariychuk, B. Datsko, Physics Letters A 372 (2008) 4902-4904

    [6] Lei Song, Shiyun Xu, Jianying Yang, Commun Nonlinear Sci Numer Simulat 15 (2010) 616-628

    [7] Nick Laskin, Phys. Rev. E 66, 056108 (2002)

    [8] Marcelo R. Ubriaco, Physics Letters A 373 (2009) 2516- 2519

    [9] Sami I. Muslih, Om P.Agrawal, Int J Theor Phys, DOI: 10.1007/s10773-009-0200-1

    [10] Vasily E. Tarasov, Annals of Physics 323 (2008) 2756- 2778

  • Metrics
    3
    views in OpenAIRE
    0
    views in local repository
    0
    downloads in local repository
Share - Bookmark