publication . Preprint . 2017

Time Operators and Time Crystals

Nakatsugawa, K.; Fujii, T.; Saxena, A.; Tanda, S.;
Open Access English
  • Published: 28 Nov 2017
We investigate time operators in the context of quantum time crystals in ring systems. A generalized commutation relation called the generalized weak Weyl relation is used to derive a class of self-adjoint time operators for ring systems with a periodic time evolution: The conventional Aharonov-Bohm time operator is obtained by taking the infinite-radius limit. Then, we discuss the connection between time operators, time crystals and real-space topology. We also reveal the relationship between our time operators and a $\mathcal{PT}$-symmetric time operator. These time operators are then used to derive several energy-time uncertainty relations.
free text keywords: Quantum Physics
Download from
32 references, page 1 of 3

[1] More precisely, if the eigenvalues of a Hamiltonian are continuous and bounded below, then there is no selfadjoint time operators which satisfy the canonical commutation relation (1).

[2] M. Reed and B. Simon, Fourier Analysis, Self-Adjointness (Methods of Modern Mathematical Physics, Vol. 2) (Academic Press, 1975).

[3] J. Muga and C. Leavens, Phys. Rep. 338, 353 (2000).

[4] Y. Aharonov and D. Bohm, Phys. Rev. 122, 1649 (1961).

[5] F. Wilczek, Phys. Rev. Lett. 109, 160401 (2012).

[6] T. Li, Z.-X. Gong, Z.-Q. Yin, H. T. Quan, X. Yin, P. Zhang, L.-M. Duan, and X. Zhang, Phys. Rev. Lett. 109, 163001 (2012).

[7] F. Wilczek, Phys. Rev. Lett. 111, 250402 (2013).

[8] C. W. von Keyserlingk and S. L. Sondhi, Phys. Rev. B 93, 245146 (2016).

[9] N. Y. Yao, A. C. Potter, I.-D. Potirniche, and A. Vishwanath, Phys. Rev. Lett. 118, 030401 (2017). [OpenAIRE]

[10] D. V. Else, B. Bauer, and C. Nayak, Phys. Rev. X 7, 011026 (2017).

[11] S. Choi and others., Nature 543, 9 (2017).

[12] J. Zhang et al., Nature 543, 217 (2017).

[13] K. Nakatsugawa, T. Fujii, and S. Tanda, Phys. Rev. B 96, 094308 (2017).

[14] A. Arai, Rev. Math. Phys. 17, 1071 (2005).

[15] E. Galapon, Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 458, 451 (2002).

32 references, page 1 of 3
Any information missing or wrong?Report an Issue