publication . Article . Preprint . 2019

The Complexity of Online Bribery in Sequential Elections (Extended Abstract)

Hemaspaandra, Edith; Hemaspaandra, Lane A.; Rothe, Jörg;
Open Access
  • Published: 01 Jul 2019 Journal: Electronic Proceedings in Theoretical Computer Science, volume 297, pages 233-251 (eissn: 2075-2180, Copyright policy)
  • Publisher: Open Publishing Association
Comment: In Proceedings TARK 2019, arXiv:1907.08335
free text keywords: PSPACE, Polynomial hierarchy, Mathematics, Mathematical economics, Completeness (statistics), QA1-939, Electronic computers. Computer science, QA75.5-76.95, Computer Science - Computer Science and Game Theory, Computer Science - Computational Complexity, Computer Science - Multiagent Systems
Related Organizations
22 references, page 1 of 2

[BCE13] F. Brandt, V. Conitzer & U. Endriss (2013): Computational Social Choice. In G. Weiss, editor: Multiagent Systems, 2nd edition, MIT Press, pp. 213-284.

[BCE+16] F. Brandt, V. Conitzer, U. Endriss, J. Lang & A. Procaccia, editors (2016): Handbook of Computational Social Choice. Cambridge University Press, doi:10.1017/CBO9781107446984.

[BCF+16] R. Bredereck, J. Chen, P. Faliszewski, A. Nichterlein & R. Niedermeier (2016): Prices Matter for the Parameterized Complexity of Shift Bribery. Information and Computation 251, pp. 140-164, doi:10.1016/j.ic.2016.08.003.

[BE98] A. Borodin & R. El-Yaniv (1998): Online Computation and Competitive Analysis. Cambridge J. Bartholdi, III, C. Tovey & M. Trick (1989): The Computational Difficulty of Manipulating an Election. Social Choice and Welfare 6(3), pp. 227-241, doi:10.1007/BF00295861.

A. Chandra, D. Kozen & L. Stockmeyer (1981): Alternation. Journal of ACM 26(1), pp. 114-133, doi:10.1145/322234.322243. [OpenAIRE]

[CLM+12] Y. Chevaleyre, J. Lang, N. Maudet, J. Monnot & L. Xia (2012): New Candidates Welcome! Possible Winners with Respect to the Addition of New Candidates. Mathematical Social Sciences 64(1), pp. 74-88, doi:10.1016/j.mathsocsci.2011.12.003. [OpenAIRE]

V. Conitzer, T. Sandholm & J. Lang (2007): When Are Elections with Few Candidates Hard to Manipulate? Journal of the ACM 54(3), p. Article 14, doi:10.1145/1236457.1236461. [OpenAIRE]

Y. Desmedt & E. Elkind (2010): Equilibria of Plurality Voting with Abstentions. In: Proceedings of the 11th ACM Conference on Electronic Commerce, ACM Press, pp. 347-356, doi:10.1145/1807342.1807398. [OpenAIRE]

E. Dekel & M. Piccione (2001): Sequential Voting Procedures in Symmetric Binary Elections. Journal of Political Economy 108(1), pp. 34-55, doi:10.1086/262110.

E. Elkind & P. Faliszewski (2010): Approximation Algorithms for Campaign Management. In: Proceedings of the 6th International Workshop On Internet And Network Economics, pp. 473-482, doi:10.1145/268999.269002. [OpenAIRE]

E. Elkind, P. Faliszewski & A. Slinko (2009): Swap Bribery. In: Proceedings of the 2nd International Symposium on Algorithmic Game Theory, Springer-Verlag Lecture Notes in Computer Science #5814, pp. 299-310, doi:10.1016/j.artint.2008.11.005. [OpenAIRE]

P. Faliszewski (2008): Nonuniform Bribery. In: Proceedings of the 7th International Conference on Autonomous Agents and Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems, pp. 1569-1572.

Z. Fitzsimmons & E. Hemaspaandra (2016): High-Multiplicity Election Problems. Technical Report arXiv:1611.08927 [cs.GT], Computing Research Repository, Revised, April 2019. [OpenAIRE]

P. Faliszewski, E. Hemaspaandra & L. Hemaspaandra (2009): How Hard Is Bribery in Elections? Journal of Artificial Intelligence Research 35, pp. 485-532, doi:10.1613/jair.2676. [OpenAIRE]

Z. Fitzsimmons, E. Hemaspaandra & L. Hemaspaandra (2016): Manipulation Complexity of SameSystem Runoff Elections. Annals of Mathematics and Artificial Intelligence 77(3-4), pp. 159-189, doi:10.1016/j.artint.2008.11.005.

22 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue