publication . Preprint . 2016

Hilbert schemes of points on some classes surface singularities

Gyenge, Ádám;
Open Access English
  • Published: 29 Sep 2016
Abstract
We study the geometry and topology of Hilbert schemes of points on the orbifold surface [C^2/G], respectively the singular quotient surface C^2/G, where G is a finite subgroup of SL(2,C) of type A or D. We give a decomposition of the (equivariant) Hilbert scheme of the orbifold into affine space strata indexed by a certain combinatorial set, the set of Young walls. The generating series of Euler characteristics of Hilbert schemes of points of the singular surface of type A or D is computed in terms of an explicit formula involving a specialized character of the basic representation of the corresponding affine Lie algebra; we conjecture that the same result holds...
Subjects
free text keywords: Mathematics - Algebraic Geometry, Mathematics - Combinatorics, Mathematics - Representation Theory
Download from
32 references, page 1 of 3

(3) The following identity is satisfied between the coordinates (m1, . . . , mn) and (z1, . . . , zn) on Zn:

1. A. B. Altman and S. L. Kleiman, Joins of schemes, linear projections, Compos. Math. 31 (1975), no. 3, 309-343.

2. G. E. Andrews, Generalized Forbenius Partitions, Mem. Amer. Math. Soc., vol. 301, Amer. Math. Soc., Providence, 1984.

3. , The theory of partitions, Encyclopedia of Mathematics and its Applications, vol. 2, Cambridge University Press, 1998.

4. A. Bialynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (1973), 480-497. [OpenAIRE]

5. J. Brianc¸on, Description de HilbnC[x, y], Invent. Math. 41 (1977), no. 1, 45-89.

6. M. Brion, Invariant Hilbert schemes, Handbook of moduli. Vol. I, Adv. Lect. Math., vol. 24, Int. Press, Somerville, MA, 2013, pp. 64-117.

7. H. Cartan, Quotient d'un espace analytique par un groupe d'automorphismes, Algebraic geometry and topology: a symposium in honor of S. Lefschetz, Princeton University Press, Princeton, NJ, 1957, pp. 90-102. [OpenAIRE]

8. J. Cheah, On the cohomology of Hilbert schemes of points, J. Algebraic Geom. 5 (1996), no. 3, 479-512.

9. H.-J. Chung, T. Dimofte, S. Gukov, and P. Sulkowski, 3d-3d Correspondence Revisited, J. High Energy Phys. 2016 (2016), no. 4, Art-No. [OpenAIRE]

10. A. N. de Celis, Dihedral groups and G-Hilbert schemes, Ph.D. thesis, University of Warwick, 2008.

11. R. Dijkgraaf, L. Hollands, P. Sulkowski, and C. Vafa, Supersymmetric gauge theories, intersecting branes and free fermions, J. High Energy Phys. 2008 (2008), no. 02, 106. [OpenAIRE]

12. R. Dijkgraaf and P. Sulkowski, Instantons on ALE spaces and orbifold partitions, J. High Energy Phys. 3 (2008), 013-013.

13. D. Eisenbud and J. Harris, 3264 and All That: A Second Course in Algebraic Geometry, Cambridge University Press, 2016.

14. G. Ellingsrud and S. A. Strømme, On the homology of the Hilbert scheme of points in the plane, Inven. Math. 87 (1987), no. 2, 343-352.

32 references, page 1 of 3
Any information missing or wrong?Report an Issue