Hilbert schemes of points on some classes surface singularities

Subject: Mathematics  Combinatorics  Mathematics  Algebraic Geometry  Mathematics  Representation Theory

References
(32)
(3) The following identity is satisfied between the coordinates (m1, . . . , mn) and (z1, . . . , zn) on Zn:
1. A. B. Altman and S. L. Kleiman, Joins of schemes, linear projections, Compos. Math. 31 (1975), no. 3, 309343.
2. G. E. Andrews, Generalized Forbenius Partitions, Mem. Amer. Math. Soc., vol. 301, Amer. Math. Soc., Providence, 1984.
3. , The theory of partitions, Encyclopedia of Mathematics and its Applications, vol. 2, Cambridge University Press, 1998.
4. A. BialynickiBirula, Some theorems on actions of algebraic groups, Ann. of Math. (1973), 480497.
5. J. Brianc¸on, Description de HilbnC[x, y], Invent. Math. 41 (1977), no. 1, 4589.
6. M. Brion, Invariant Hilbert schemes, Handbook of moduli. Vol. I, Adv. Lect. Math., vol. 24, Int. Press, Somerville, MA, 2013, pp. 64117.
7. H. Cartan, Quotient d'un espace analytique par un groupe d'automorphismes, Algebraic geometry and topology: a symposium in honor of S. Lefschetz, Princeton University Press, Princeton, NJ, 1957, pp. 90102.
8. J. Cheah, On the cohomology of Hilbert schemes of points, J. Algebraic Geom. 5 (1996), no. 3, 479512.
9. H.J. Chung, T. Dimofte, S. Gukov, and P. Sulkowski, 3d3d Correspondence Revisited, J. High Energy Phys. 2016 (2016), no. 4, ArtNo.

Metrics
No metrics available

 Download from


Cite this publication