Hilbert schemes of points on some classes surface singularities

Preprint English OPEN
Gyenge, Ádám;
(2016)
  • Subject: Mathematics - Combinatorics | Mathematics - Algebraic Geometry | Mathematics - Representation Theory

We study the geometry and topology of Hilbert schemes of points on the orbifold surface [C^2/G], respectively the singular quotient surface C^2/G, where G is a finite subgroup of SL(2,C) of type A or D. We give a decomposition of the (equivariant) Hilbert scheme of the ... View more
  • References (32)
    32 references, page 1 of 4

    (3) The following identity is satisfied between the coordinates (m1, . . . , mn) and (z1, . . . , zn) on Zn:

    1. A. B. Altman and S. L. Kleiman, Joins of schemes, linear projections, Compos. Math. 31 (1975), no. 3, 309-343.

    2. G. E. Andrews, Generalized Forbenius Partitions, Mem. Amer. Math. Soc., vol. 301, Amer. Math. Soc., Providence, 1984.

    3. , The theory of partitions, Encyclopedia of Mathematics and its Applications, vol. 2, Cambridge University Press, 1998.

    4. A. Bialynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (1973), 480-497.

    5. J. Brianc¸on, Description de HilbnC[x, y], Invent. Math. 41 (1977), no. 1, 45-89.

    6. M. Brion, Invariant Hilbert schemes, Handbook of moduli. Vol. I, Adv. Lect. Math., vol. 24, Int. Press, Somerville, MA, 2013, pp. 64-117.

    7. H. Cartan, Quotient d'un espace analytique par un groupe d'automorphismes, Algebraic geometry and topology: a symposium in honor of S. Lefschetz, Princeton University Press, Princeton, NJ, 1957, pp. 90-102.

    8. J. Cheah, On the cohomology of Hilbert schemes of points, J. Algebraic Geom. 5 (1996), no. 3, 479-512.

    9. H.-J. Chung, T. Dimofte, S. Gukov, and P. Sulkowski, 3d-3d Correspondence Revisited, J. High Energy Phys. 2016 (2016), no. 4, Art-No.

  • Related Organizations (5)
  • Metrics
Share - Bookmark