Hilbert schemes of points on some classes surface singularities
- Published: 29 Sep 2016
(3) The following identity is satisfied between the coordinates (m1, . . . , mn) and (z1, . . . , zn) on Zn:
1. A. B. Altman and S. L. Kleiman, Joins of schemes, linear projections, Compos. Math. 31 (1975), no. 3, 309-343.
2. G. E. Andrews, Generalized Forbenius Partitions, Mem. Amer. Math. Soc., vol. 301, Amer. Math. Soc., Providence, 1984.
3. , The theory of partitions, Encyclopedia of Mathematics and its Applications, vol. 2, Cambridge University Press, 1998.
4. A. Bialynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (1973), 480-497. [OpenAIRE]
5. J. Brianc¸on, Description de HilbnC[x, y], Invent. Math. 41 (1977), no. 1, 45-89.
6. M. Brion, Invariant Hilbert schemes, Handbook of moduli. Vol. I, Adv. Lect. Math., vol. 24, Int. Press, Somerville, MA, 2013, pp. 64-117.
7. H. Cartan, Quotient d'un espace analytique par un groupe d'automorphismes, Algebraic geometry and topology: a symposium in honor of S. Lefschetz, Princeton University Press, Princeton, NJ, 1957, pp. 90-102. [OpenAIRE]
8. J. Cheah, On the cohomology of Hilbert schemes of points, J. Algebraic Geom. 5 (1996), no. 3, 479-512.
9. H.-J. Chung, T. Dimofte, S. Gukov, and P. Sulkowski, 3d-3d Correspondence Revisited, J. High Energy Phys. 2016 (2016), no. 4, Art-No. [OpenAIRE]
10. A. N. de Celis, Dihedral groups and G-Hilbert schemes, Ph.D. thesis, University of Warwick, 2008.
11. R. Dijkgraaf, L. Hollands, P. Sulkowski, and C. Vafa, Supersymmetric gauge theories, intersecting branes and free fermions, J. High Energy Phys. 2008 (2008), no. 02, 106. [OpenAIRE]
12. R. Dijkgraaf and P. Sulkowski, Instantons on ALE spaces and orbifold partitions, J. High Energy Phys. 3 (2008), 013-013.
13. D. Eisenbud and J. Harris, 3264 and All That: A Second Course in Algebraic Geometry, Cambridge University Press, 2016.
14. G. Ellingsrud and S. A. Strømme, On the homology of the Hilbert scheme of points in the plane, Inven. Math. 87 (1987), no. 2, 343-352.