publication . Preprint . 2015

Frames and outer frames for Hilbert C^*-modules

Arambašić, Ljiljana; Bakić, Damir;
Open Access English
  • Published: 15 Jul 2015
The goal of the present paper is to extend the theory of frames for countably generated Hilbert $C^*$-modules over arbitrary $C^*$-algebras. In investigating the non-unital case we introduce the concept of outer frame as a sequence in the multiplier module $M(X)$ that has the standard frame property when applied to elements of the ambient module $X$. Given a Hilbert $\A$-module $X$, we prove that there is a bijective correspondence of the set of all adjointable surjections from the generalized Hilbert space $\ell^2(\A)$ to $X$ and the set consisting of all both frames and outer frames for $X$. Building on a unified approach to frames and outer frames we then obt...
free text keywords: Mathematics - Operator Algebras, Mathematics - Functional Analysis, Primary 46L08, Secondary 42C15
Download from
22 references, page 1 of 2

[2] Lj. Arambaˇsi´c, On frames for countably generated Hilbert C*-modules, Proc. Amer. Math. Soc., 135 (2007). 469-478.

[3] D. Baki´c, T. Beri´c, Finite extensions of Bessel sequences, Banach J. Math. Anal., 9 (2015), no 4, 1-13.

[4] D. Baki´c, T. Beri´c, On excesses of frames, accepted for publication in Glasnik Matematiˇcki.

[5] D. Baki´c, B. Guljaˇs, Extensions of Hilbert C∗-modules, I, Houston J. Math., 30 (2004) 537-558.

[6] D. Baki´c, B. Guljaˇs, On a class of module maps of Hilbert C∗-modules, Math. Commun., 7 (2003), 177-192.

[7] P. Casazza, O. Christensen, Perturbations of operators and applications to frame theory, J. Fourier Anal. Appl., 3 (1997), 543-557.

[8] O. Christensen, An introduction to frames and Riesz bases, Birkh¨auser, 2003.

[9] M. Frank, D. Larson, A module frame concept for Hilbert C∗-modules, 207-233, Contemp. Math., 247, Amer. Math. Soc., Providence, RI, 1999.

[10] M. Frank, D. R. Larson, Frames in Hilbert C∗-modules and C∗-algebras, J. Operator Theory 48 (2002), no. 2, 273-314.

[11] M. Frank, D. Larson, Modular frames for Hilbert C∗-modules and symmetric approximation of frames, Proc. SPIE 4119 (2000), 325-336.

[12] D. Han, Frame representations and Parseval duals with applications to Gabor frames, Trans. Amer. Math. Soc., 360 (2008), 3307-3326.

[13] D. Han, D. Larson, W. Jing, R. N. Mohapatra, Riesz bases nad their dual modular frames in Hilbert C∗-modules, J. Math. Anal. Appl., 343 (2008), 246-256.

[14] D. Han, D. Larson, W. Jing, R. N. Mohapatra, Perturbation of frames and Riesz bases in Hilbert C*-modules, Linear Algebra Appl., 431 (2009), no. 5-7, 746-759.

[15] W. Jing, Frames in Hilbert C∗-modules, PhD thesis, University of Central Florida, 2006.

[16] V. Kaftal, D. Larson, S. Zhang, Operator-valued frames on C∗-modules, Contemporary Math., 451 (2008) 363-405.

22 references, page 1 of 2
Any information missing or wrong?Report an Issue