Frames and outer frames for Hilbert C^*-modules
- Published: 15 Jul 2015
- 1
- 2
[2] Lj. Arambaˇsi´c, On frames for countably generated Hilbert C*-modules, Proc. Amer. Math. Soc., 135 (2007). 469-478.
[3] D. Baki´c, T. Beri´c, Finite extensions of Bessel sequences, Banach J. Math. Anal., 9 (2015), no 4, 1-13.
[4] D. Baki´c, T. Beri´c, On excesses of frames, accepted for publication in Glasnik Matematiˇcki.
[5] D. Baki´c, B. Guljaˇs, Extensions of Hilbert C∗-modules, I, Houston J. Math., 30 (2004) 537-558.
[6] D. Baki´c, B. Guljaˇs, On a class of module maps of Hilbert C∗-modules, Math. Commun., 7 (2003), 177-192.
[7] P. Casazza, O. Christensen, Perturbations of operators and applications to frame theory, J. Fourier Anal. Appl., 3 (1997), 543-557.
[8] O. Christensen, An introduction to frames and Riesz bases, Birkh¨auser, 2003.
[9] M. Frank, D. Larson, A module frame concept for Hilbert C∗-modules, 207-233, Contemp. Math., 247, Amer. Math. Soc., Providence, RI, 1999.
[10] M. Frank, D. R. Larson, Frames in Hilbert C∗-modules and C∗-algebras, J. Operator Theory 48 (2002), no. 2, 273-314.
[11] M. Frank, D. Larson, Modular frames for Hilbert C∗-modules and symmetric approximation of frames, Proc. SPIE 4119 (2000), 325-336.
[12] D. Han, Frame representations and Parseval duals with applications to Gabor frames, Trans. Amer. Math. Soc., 360 (2008), 3307-3326.
[13] D. Han, D. Larson, W. Jing, R. N. Mohapatra, Riesz bases nad their dual modular frames in Hilbert C∗-modules, J. Math. Anal. Appl., 343 (2008), 246-256.
[14] D. Han, D. Larson, W. Jing, R. N. Mohapatra, Perturbation of frames and Riesz bases in Hilbert C*-modules, Linear Algebra Appl., 431 (2009), no. 5-7, 746-759.
[15] W. Jing, Frames in Hilbert C∗-modules, PhD thesis, University of Central Florida, 2006.
[16] V. Kaftal, D. Larson, S. Zhang, Operator-valued frames on C∗-modules, Contemporary Math., 451 (2008) 363-405.
- 1
- 2