publication . Preprint . Article . 2000

Entropy and Wigner functions

Giovanni Manfredi; M. R. Feix;
Open Access English
  • Published: 01 Oct 2000
Abstract
The properties of an alternative definition of quantum entropy, based on Wigner functions, are discussed. Such definition emerges naturally from the Wigner representation of quantum mechanics, and can easily quantify the amount of entanglement of a quantum state. It is shown that smoothing of the Wigner function induces an increase in entropy. This fact is used to derive some simple rules to construct positive definite probability distributions which are also admissible Wigner functions
Subjects
free text keywords: Quantum Physics, Method of quantum characteristics, Von Neumann entropy, Joint quantum entropy, Wigner quasiprobability distribution, Quantum relative entropy, Wigner D-matrix, Mathematics, Statistical physics, Quantum mechanics, Wigner distribution function, Wigner semicircle distribution

[1] John Von Neumann, The Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955).

[2] E.P. Wigner, Phys. Rev. 40, 749 (1932).

[3] V.I. Tatarskii, Usp. Fiz. Nauk 139, 587 (1983) [Sov. Phys. Usp. 26, 311 (1983)].

[4] M. Hillery, R.F. O'Connell, M.O. Scully, and E.P. Wigner, Phys. Rep. 106, 121 (1984).

[5] W.H. Zurek, S. Habib, and J.P. Paz, Phys. Rev. Lett 70, 1187 (1993).

[6] A.K. Pattanayak, Phys. Rev. Lett 83, 4526 (1999).

[7] C. Tsallis, J. Stat. Phys. 52, 479 (1988).

[8] Bruce M. Boghosian, Phys. Rev. E 53, 4754 (1996).

[9] A. Wehrl, Rev. Mod. Phys. 50, 221 (1978).

[10] K. Husimi, Proc. Phys. Math. Soc. Japan 22, 264 (1940); N.D. Cartwright, Physica 83A, 210 (1976).

[11] R.J. Glauber, Phys. Rev. Lett 10, 84 (1963); S. Howard and S.K. Roy, Am. J. Phys. 55, 1109 (1987).

[12] W.H. Zurek, Phys. Rev. D 24, 1516 (1981); Phys. Rev. D 26, 1862 (1982); Phys. Today 44, No. 10, 36 (1991).

[13] A.K. Pattanayak and P. Brumer, Phys. Rev. Lett 79, 4131 (1997); S. Habib, K. Shizume, and W.H. Zurek, Phys. Rev. Lett 80, 4361 (1998); J.P. Paz and W.H. Zurek, Phys. Rev. Lett 82, 5181 (1999).

[14] G. Manfredi and M.R. Feix, in Advances in Kinetic Theory and Computing, edited by B. Perthame (World Scientific, Singapore, 1994), pp. 109-140; G. Manfredi and M.R. Feix, Phys. Rev. E 53, 6460 (1996).

Any information missing or wrong?Report an Issue