26 references, page 1 of 3 [10] [11] [12] [1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436-444, 2015.

[2] V Peretroukhin, J Kelly, and T. D. Barfoot, “Optimizing camera perspective for stereo visual odometry,” in Canadian Conference on Comp. and Robot Vision, May 2014, pp. 1-7.

[3] V Peretroukhin, W Vega-Brown, N Roy, and J Kelly, “PROBE-GK: Predictive robust estimation using generalized kernels,” in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), May 2016, pp. 817-824.

[4] V Peretroukhin, L Clement, M Giamou, and J Kelly, “PROBE: Predictive robust estimation for visual-inertial navigation,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Syst. (IROS), 2015, pp. 3668-3675.

[5] G Costante, M Mancini, P Valigi, and T. A. Ciarfuglia, “Exploring representation learning with CNNs for Frame-to-Frame Ego-Motion estimation,” IEEE Robot. Autom. Letters, vol. 1, no. 1, pp. 18-25, Jan. 2016, ISSN: 2377-3766.

[6] R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni, “VINet: Visual-Inertial odometry as a Sequence-to-Sequence learning problem,” 2017. arXiv: 1701.08376 [cs.CV].

[7] A. Kendall and R. Cipolla, “Geometric loss functions for camera pose regression with deep learning,” 2017. arXiv: 1704.00390 [cs.CV].

[8] I. Melekhov, J. Ylioinas, J. Kannala, and E. Rahtu, “Relative camera pose estimation using convolutional neural networks,” 2017. arXiv: 1702.01381 [cs.CV].

[9] G. L. Oliveira, N. Radwan, W. Burgard, and T. Brox, “Topometric localization with deep learning,” 2017. arXiv: 1706 . 08775 [cs.CV].

V. Peretroukhin, L. Clement, and J. Kelly, “Reducing drift in visual odometry by inferring sun direction using a bayesian convolutional neural network,” in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), May 2017.