16 references, page 1 of 2 [BeSo98] N. Bergeron and F. Sottile, Schubert polynomials, the Bruhat order, and the geometry of flag manifolds, Duke Math. J. 95(1998), no. 2, 373-423.

[BlMuSo15] J. Blasiak, K. D. Mulmuley and M. Sohoni, Geometric Complexity Theory IV: Nonstandard Quantum Group for the Kronecker Problem, Mem. Amer. Math. Soc., Vol. 235, No. 1109, 2015.

[BuSoYo05] A. S. Buch, F. Sottile and A. Yong, Quiver coefficients are Schubert structure constants, Math. Res. Lett. 12(2005), no. 4, 567-574.

[FePi11] V. Fe´ray and P. Sniady, Asymptotics of characters of symmetric groups related to Stanley character formula, Ann. Math., Vol 173(2011), Issue 2, 887-906.

[FuHa99] W. Fulton and J. Harris, Representation theory, a first course, Springer-Verlag, 1999.

[Ja78] G. D. James, The Representation Theory of the Symmetric Groups, Lecture Notes in Mathematics, Volume 682, Springer, 1978.

[JaKe09] G. D. James and A. Kerber, The Representation Theory of the Symmetric Group, Cambridge University Press, Cambridge, 2009.

[KnMiSh04] A. Knutson, E. Miller and M. Shimozono, Four positive formulae for type A quiver polynomials, Invent. Math. 166(2006), no. 2, 229-325.

[Ma01] L. Manivel, Symmetric functions, Schubert polynomials and degeneracy loci. Translated from the 1998 French original by John R. Swallow. SMF/AMS Texts and Monographs, American Mathematical Society, Providence, 2001.

[Mu38] F. D. Murnaghan, The analysis of the Kronecker product of irreducible representations of the symmetric group, Amer. J. Math. 60(1938), no. 3, 761-784.