Quantum Thetas on Noncommutative T^d with General Embeddings

Preprint English OPEN
Chang-Young, Ee; Kim, Hoil;

In this paper we construct quantum theta functions over noncommutative T^d with general embeddings. Manin has constructed quantum theta functions from the lattice embedding into vector space x finite group. We extend Manin's construction of quantum thetas to the case of... View more
  • References (12)
    12 references, page 1 of 2

    [1] A. Schwarz, Theta-functions on noncommutative tori, Lett. Math. Phys. 58, 81 (2001).

    [2] Y. Manin, Quantized theta-functions in: Common trends in mathematics and quantum field theories (Kyoto, 1990), Progress of Theor. Phys. Suppl. 102, 219 (1990).

    [3] Y. Manin, Theta functions, quantum tori and Heisenberg groups, math.AG/0011197.

    [4] Y. Manin, Real multiplication and noncommutative geometry, math.AG/0202109.

    [5] Y. Manin, Functional equations for quantum theta functions, math.QA/0307393.

    [6] M. Rieffel, Projective modules over higher-dimensional non-commutative tori, Can. J. Math. Vol. XL, 257 (1988).

    [7] M. Dieng and A. Schwarz, Differential and complex geometry of two-dimensional noncommutative tori, QA/0203160.

    [8] M. Rieffel and A. Schwarz, Morita equivalence of multidimensional noncommutative tori, Int. J. Math. 10, 289 (1999).

    [9] Ee C.-Y. and H. Kim, Symmetry of quantum torus with crossed product algebra, J. Math. Phys. 47, 073058 (2006).

    [10] Ee C.-Y. and H. Kim, Quantum Thetas on Noncommutative T4 from Embeddings into Lattice, math-ph/0605075.

  • Related Organizations (2)
  • Metrics
Share - Bookmark