27 references, page 1 of 3 [5] Bader F AlBdaiwi, Boris Goldengorin, and Gerard Sierksma. Equivalent instances of the simple plant location problem. Computers & Mathematics with Applications, 57(5):812-820, 2009.

[6] Osman Alp and Erhan Erkut. An efficient genetic algorithm for the pmedian problem. Annals of Oerations Research, 122:21-42, 2003.

[8] J. E. Beasley. OR-LIBRARY, http: // people. brunel. ac. uk/ ~mastjjb/ jeb/ orlib/ pmedinfo. html

[9] Benjamin Biesinger, Bin Hu, and Günther Raidl. A hybrid genetic algorithm with solution archive for the discrete (r| p)-centroid problem. Journal of Heuristics, 21(3):391-431, 2015.

[10] Burcin Bozkaya, Jianjun Zhang, and Erhan Erkut. An efficient genetic algorithm for the p-median problem. Facility location: Applications and theory, pages 179-205, 2002.

[11] Mark S. Daskin and Kayse Lee Maass. Location Science, G. Laporte, S. Nickel and F. Saldanha da Gama (Eds.), chapter 2: The p-Median Problem, pages 21-45. Springer, 2015.

[12] Zvi Drezner, Jack Brimberg, Nenad Mladenović, and Said Salhi. New heuristic algorithms for solving the planar p-median problem. Computers & Operations Research, 62:296-304, 2015.

[13] Tarek A El-Mihoub, Adrian A Hopgood, Lars Nolle, and Alan Battersby. Hybrid genetic algorithms: A review. Engineering Letters, 13(2):124-137, 2006.

[14] Reza Zanjirani Farahani, Masoud Hekmatfar, Alireza Boloori Arabani, and Ehsan Nikbakhsh. Hub location problems: A review of models, classification, solution techniques, and applications. Computers & Industrial Engineering, 64(4):1096-1109, 2013.

[15] Boris Goldengorin, Anton Kocheturov, and Panos M Pardalos. A pseudoboolean approach to the market graph analysis by means of the p-median model. In Clusters, Orders, and Trees: Methods and Applications, pages 77-89. Springer, 2014.